微功耗清洁能源存贮系统
一般多电平FBI逆变器[1],例如三电平逆变、五电平逆变,七电平逆变等,增加输出电压电平数N的目的,是为了减少输出电压波形中的谐波含量,但所需功率器件和电路复杂性呈指数增加,必须要有N个隔离的、独立的电压源,而且每个FBI中功率器件的驱动信号也是隔离的、独立的。三相二电平逆变,功率器件6个,三相三电平逆变,功率器件12个,三相五电平逆变,功率器件24个。如果要实现16电平逆变,所需功率器件P=2N=216=65536,需要隔离的、独立的驱动信号65536个,这种纸上谈兵的逆变电路,在实际上是完全不可能实现的。所有有关逆变器的教科书都提及多电平逆变,但没有哪一本教科书能画出五电平以上逆变器的实际电路,因为太复杂,画也画不出来,怎么能实际做出来。
SPWM全桥逆变电路(FBI),不仅仅是功率器件呈指数增加的问题,更要命的是,在进行多电平叠加的同时,还要在每一个电平中进行SPWM脉宽调制,一个FBI的SPWM控制已经够复杂,现在要对多达2N=65536个SPWM驱动信号进行控制,其空间矢量的复杂程度,是不可想像的。
微功耗直流耗逆变器所需功率器件和电路复杂性呈线性增加,即所需功率器件P=2N,其中N为电平数。图4是4电平微功耗直流逆变器的实际电路,所需功率器件P=2N=2*4=8,实现16电平逆变器,所需功率器件P=2N=2*16=32,限于文章篇幅,本处不宜画完整电路图,仅在图13画出了微功耗直流逆变器(16阶)宝塔波电压驱动信号产生电路及图14的宝塔波电压驱动信号仿真波形,16电平微功耗直流逆变器的完整电路请参考文献[3]。
图16是直流逆变器(16阶)宝塔波电压仿真波形,图中曲线可以看到,N=16的宝塔波已经趋近正弦波,根本用不着进行电压切割。

图16 直流逆变器(16阶)输出电压仿真波形
7.4电压切割电路
用正弦波波形切割宝塔波,设切去正弦波后剩下来的部份面积为S0,当宝塔波的阶数N=1时,S0=A(1-SinX),其中A是输入电压的幅值,根据计算,这部份面积占总面积的36%。当宝塔波的阶数N=16,或大于某个正整数时,宝塔波已经趋近正弦波,根本用不着进行电压切割。当阶数N在1和某个正整数之间时,切割下来的面积S0所代表的功率比较可观,必须通过功率变换,或反馈,或输出,提高整机效率。
图17是电压切割电路[2][4],功率MOS管Q5、Q6和磁芯变压器TX1组成了主电路,100kHz的方波驱动信号V1、V5分别加在Q5、Q6的栅极,V2是输入正弦波电压Vi,Vi为幅值360V的正弦波电压,负载R6接在Q6的源极。
输入电压的正半周,当驱动方波电压V5为高电平时,Q6饱和导通,输入电压Vi通过Q5的体内二极管和Q6的漏源极,加在负载电阻R5和变压器TX1的原边;在输入电压的负半周,当驱动方波电压V1为高电平时,Q5饱和导通,输入电压Vi通过Q6的体内二极管和Q5的漏源极,加在负载电阻R5和变压器TX1的原边。适当选择变压器原边的电感量和驱动信号V1、V5的脉宽,可便负载电阻R5上的电压为输出额定值。
变压器TX1的附边接有由Q1-Q4组成的动态整流电路[1],可将TX1付边产生的包络为正弦波的双边带方波电压Vs整流为正弦波电压,适当选择TX1的变比和驱动信号V1、V5的脉宽,可使得动态整流电路输出的正弦波电压(由Q3、Q4的源极取出)为额定输出电压,此电压与输入电压同频、同相、同步,与电阻R5产生的额定电压同频、同相,同幅,共同形成输出电压Vo。由于整机不采用铁芯,并不利用磁饱和现象稳定交流电压,因而不会产生正弦波波形失真,有关动态整流的论述请参考文献[2]。
图17右边是切割电路各点电压的仿真波形,最外层是幅值360V的输入电压Vi,下面是电阻R5上被切去头部后的输入电压和TX1付边产生的动态整流电压共同形成的输出电压Vo,最里层是变压器原边产生的包络为正弦波的双边带方波电压Vp,付边电压Vs由TX1的变比决定,是Vp的n倍。

图17 电压切割电路
评论