新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 微功耗清洁能源存贮系统

微功耗清洁能源存贮系统

作者: 时间:2012-06-21 来源:网络 收藏

图5是单相微功率因数校正器的实用电路,MOS功率管驱动信号由控制芯片UC1825提供,并不需要UC3854等功率因数校正的专用芯片。

进行微功率因数校正,用不着把输入功率全部变换成方波电压,只需要把输入馒头波电压补偿成直流电压即可。经过电压补偿后的馒头波电压,成为一条直线,意味着与市电所有幅值相对应的所有时刻,输入电流都有机会对滤波电容充电,即都有电流从网侧流出,输入电流自然与输入电压同步。从图6右边最下面的波形可以看出,输入电流波形完全是正弦波。图4的馒头波电压的补偿电路,实际上就是微功率耗功率因数校正器的原理电路。可以看到,功率因数校正电路中,负载电阻R1并联了大电容C3滤波,并不是纯电阻负载。

图5右边是单相微功率因数校正器实用电路各点电压、电流的仿真波形,从上到下依次是:输出电压Vo、输入电压Vi、馒头波电压Vd、补偿电压Vc、输入电流Ii,当把馒头波电压Vd补偿成直流电压以后,输入电流的波形自然成为正弦波波形。

功率因数的定义是[1]:PF=P/S。对于一个封闭来说,PF的极大值等于1,因为有功功率P是视在功率S的一部份,而且仅当无功功率等于零的时候,才有S=P,从而PF=1。上述电压补偿电路正是这样一个封闭,其中的补偿电压Vc来自馒头波电压Vd。但是,对于一个开放,情形就不一样:如果产生补偿电压Vc的功率Pout来自系统外,经电压补偿后,输入电流波形与输入电压波形完全同步,系统从网侧仅吸收有功功率,网侧波形也不发生畸变,无功功率为零,则有P=S,但此时功率因数PF=(P+Pout)/S,显然,此时有PF>1,即功率因数大于100%,此式说明,采用微功耗功率因数校正,PFC可以大于100%。

图5单相微功耗功率因数校正器

图6电路中,市电进行倍压整流,具有正负对称电压输出,正负对称电压接有对称的功率因数校正电路,以地为对称轴,对称的上下两部份电路都与图5相同,只不过下部份电路中的二极管反向、功率MOS管换成P型器件。上下对称的正负功率因数校正电路各处理10ms的输入电压,互不干扰。图6右边是正负对称电压时输入交流电压、交流电流的仿真波形,输入电流Ii的波形为正弦波,与输入电压完全同步。具有正负对称电压输出的功率因数校正电路,可应用于需要正负对称电路输入的逆变电路。

图6 单相输入正负对称直流输出功率因数校正电路

图7是采用星形接法的三相微功耗功率因数校正器的实用电路。把图4直流电压补偿电路中的电池V2用星形接法的三相整流后的馒头波电压Vd取代,功率MOS管Q1的驱动信号由芯片UC1825提供,工作原理和单相微功耗功率因数校正器电路完全相同,此处不再重复。

图7右边是各点电压、电流的仿真波形,从上到下依次是:整流电压Vd,输入电流Ia、Ib、Ic。从仿真波形可以看到,图8右边下部份的输入电流仿真波形和图2中间下部份的输入电流的仿真波形完全相同,说明经过三相功率因数校正后,输入电流波形和纯电阻负载时输入电流波形完全相同,亦即说明采用电压补偿电路进行功率因数校正达到了功率因数为1,而总谐波畸变THD为零的效果。必须说明的是,三相微功耗功率因数校正器的负载电阻R2并联有大电容C5,并不是纯电阻负载,但其输入电流的仿真波形,和星形接法三相不控整流的纯电阻负载时的输入电流仿真波形完全一样。

图7 星形接法的三相功率因数校正电路



评论


相关推荐

技术专区

关闭