基于DSP NNC-PID的电液位置伺服控制系统设计
将ISPl581映射到TMS320F2812的XINTF ZoneO空间,使用


2.5 外扩存储器电路
TMS320F2812将外部的存储空间映射为5个16位的区域,XINTF Zone0~XINTF Zone2、XINTF Zone 6和XINTF Zone7。其中XINTF ZoneO和XINTF Z0nel均为8 KB,并且共用片选信号






3 神经网络NNC-PID控制器
神经网络是一个高度非线性的超大规模连续时间动力系统,具有大规模并行分布处理、高度的鲁棒性、自适应性和学习联想等能力,它能很好地自适环境变化,自学习修改过程参数,这些特性为神经网络应用到电液位置伺服系统控制中提供了巨大的潜力。
3.1 神经网络PID控制系统结构
神经网络PID控制系统结构如图3(a)所示。从控制系统框图中可以看出,神经网络PID控制包括两个控制子模块:NNI为被控对象模型辨识器,NNC为神经网络PID控制器。NNC-PID控制系统的工作原理是:首先获取实际被控对象的输入输出样本对,然后利用NNI对被控对象进行离线辨识,当辨识精度达到设定的要求时,通过实时调整NNC的权值系数,使系数具有自适应性,从而达到有效控制的目的。本文引用地址:https://www.eepw.com.cn/article/162904.htm
3.2 神经网络辨识器(被控对象模型辨识器NNI)
神经网络辨识器NNI采用3层串并联BP网络实现,包括输入层、隐层、输出层,其结构如图3(b)所示。网络的输入是被控对象的输入/输出序列[u(k),y(k)],网络的输出为教师信号。
网络隐层的输入输出为:
3.3 神经网络NNC-PID控制器(单神经元自适应NNC-PID控制器)
由于被控对象模型不确定、不确知,并且存在着外界随机扰动,为了达到较高的控制精度,在被控对象模型离线辨识的基础上,采用单神经元自适应NNC-PID控制器结构,如图4所示。
网络的权值系数值V=[v1,v2,v3],即表征PID控制器的3个系数KP,KI,KD。,网络的输入为X=[x1,x2,x3],即表征3个输入参数e(k)、△e(k)、△2e(k),网络的输出为△u(k)。
评论