关 闭

新闻中心

EEPW首页 > 工控自动化 > 设计应用 > 基于DSP NNC-PID的电液位置伺服控制系统设计

基于DSP NNC-PID的电液位置伺服控制系统设计

作者: 时间:2010-08-23 来源:网络 收藏

将ISPl581映射到TMS320F2812的XINTF ZoneO空间,使用作为ISPl581的片选信号,选用TMS320F2812的1个GPIO引脚作为复位ISPl581的信号,将读写控制信号直接相连,在对ISPl581操作中有重要作用的中断信号接到DSP的XINTl,以便DSP能及时处理USB的通信中断,由于ISPl581的存储空间是8位组织的,而TMS320F2812的存储空间是16位组织的,可将其数据线DO~D15直接相连,ISP1581的地址线A0接地,A1与DSP的A0相连,A2与DSP的A1相连,依次类推至A7与DSP的A6相连。ISP1581的工作模式选为通用处理器模式,即单独的地址线AO~A 7,处理器和DMA共用数据线D0~D15,读写模式选为8051模式即读写控制为。将MODEl引脚直接与+5 V连接,引脚ALE/AO接地。
2.5 外扩存储器电路
TMS320F2812将外部的存储空间映射为5个16位的区域,XINTF Zone0~XINTF Zone2、XINTF Zone 6和XINTF Zone7。其中XINTF ZoneO和XINTF Z0nel均为8 KB,并且共用片选信号;XINTF Zone2为521 KB,片选信号;XINTF Zone6为521 KB,XINTF Zone7为16 KB,共用片选信号。存储器电路使用XINTF Zone2和INTF Zone6的存储空间,选用IS6lLV25616作为存储器件。将TMS320F-2812和IS61LV25616的数据线D0~D16、地址线AO~A17、读写控制直接连接,TMS320F2812的、A18通过由逻辑门器件74AC04和74LVC32组成的译码电路后形成片选信号,从而实现了对IS61LV25616的读写控制。

3 神经网络NNC-PID控制器
神经网络是一个高度非线性的超大规模连续时间动力系统,具有大规模并行分布处理、高度的鲁棒性、自适应性和学习联想等能力,它能很好地自适环境变化,自学习修改过程参数,这些特性为神经网络应用到电液位置伺服系统控制中提供了巨大的潜力。
3.1 神经网络PID控制系统结构
神经网络PID控制系统结构如图3(a)所示。从控制系统框图中可以看出,神经网络PID控制包括两个控制子模块:NNI为被控对象模型辨识器,NNC为神经网络PID控制器。NNC-PID控制系统的工作原理是:首先获取实际被控对象的输入输出样本对,然后利用NNI对被控对象进行离线辨识,当辨识精度达到设定的要求时,通过实时调整NNC的权值系数,使系数具有自适应性,从而达到有效控制的目的。

本文引用地址:https://www.eepw.com.cn/article/162904.htm


3.2 神经网络辨识器(被控对象模型辨识器NNI)
神经网络辨识器NNI采用3层串并联BP网络实现,包括输入层、隐层、输出层,其结构如图3(b)所示。网络的输入是被控对象的输入/输出序列[u(k),y(k)],网络的输出为教师信号
网络隐层的输入输出为:

3.3 神经网络NNC-PID控制器(单神经元自适应NNC-PID控制器)
由于被控对象模型不确定、不确知,并且存在着外界随机扰动,为了达到较高的控制精度,在被控对象模型离线辨识的基础上,采用单神经元自适应NNC-PID控制器结构,如图4所示。


网络的权值系数值V=[v1,v2,v3],即表征PID控制器的3个系数KP,KI,KD。,网络的输入为X=[x1,x2,x3],即表征3个输入参数e(k)、△e(k)、△2e(k),网络的输出为△u(k)。



关键词: 收发器

评论


相关推荐

技术专区

关闭