基于SPWM 逆变器控制系统的建模与仿真
2 电流内环电压外环双环控制的基本原理
早些年,逆变器电压电流双环控制用输出电压有效值外环维持输出电压有效值恒定,这种控制方式只能保证输出电压的有效值恒定,不能保证输出电压的波形质量,特别是在非线性负载条件下输出电压谐波含量大,波形失真严重;另一方面,电压有效值外环控制的动态响应过程十分缓慢,在突加、突减负载时输出波形波动大,恢复时间一般需要几个甚至几十个基波周期,瞬时控制方案可以在运行过程中实时地调控输出电压波形,使得供电质量大大提高。其中,应用较多的有:电压单环控制、电压电流双环控制、滞环控制等。
本文主要采用电流内环电压外环的双环控制,结构框图如图3 所示,输出反馈电压和给定电压基准信号比较,形成瞬时误差调节信号。经过电压PI 调节器后作为电流给定基准值,与电流反馈信号比较,形成瞬时误差信号,经过电流PI 调节器产生电流误差控制信号。
该信号与三角载波交截后产生SPWM 开关信号,控制主电路开关器件,在LC 滤波器前端形成SPWM 调制电压,经LC 滤波器后输出正弦电压。
图3 双闭环控制系统框图
2.1 具有状态解耦的多环控制系统
在双环控制系统中,由于电压外环对电流内环具有缓慢扰动作用,要实现更好的控制效果,必须对控制对象进行解耦,消除输出电压产生的交叉反馈作用。
依据控制结构的不同,效果也会不一样,文中对以下提出两种改进方案进行分析。
(1)带负载电流解耦的电感电流反馈
如果电感电流能够得到快速跟踪,则相对外环来说,内环动态过程可以忽略,负载电流就很容易解耦。
图4 是实现了负载电流解耦的内环电感电流反馈控制结构图。负载电流解耦把负载电流作为电流环附加指令,不必等到电压误差产生就能提供负载所需要的电流。这样负载突变可以通过前馈有效地抑制,不依赖外环来调节,从而提高响应速度。电感电流内环的带宽由Ki设置,带宽越大,电感电流跟踪的快速性越好,负载电流解耦的效果也越好,输出波形的稳态精度也越高。
图4 电感电流反馈控制框图
指令传递函数:
扰动传递函数:
(2)带输出电压解耦的电容电流反馈
从电路的角度来看,对LC 滤波器而言,出现负载扰动时,电感电流不能突变,只能影响电容电流。因此,电容电流反馈可以直接反映出负载电流的变化。
从扰动的作用点来看,采用电容电流反馈可以将负载扰动,包含在反馈环路的前向通道内,因此可以及时对扰动产生抑制。从反馈原理来看,反馈哪个量,就能增强那个量的稳定度,反馈电容电流能使其在负载汲取电流时仍有维持不变的趋势。这样,不需要扰动前馈补偿,电容电流反馈结构就可以得到比仅用电感电流反馈要好的动态性能。从逆变器的输出来看,只要精确保证电容电流为正弦,无论负载如何变化都可以得到良好的输出正弦电压。若取电感电流反馈(无负载电流前馈补偿),那么负载扰动只能通过电压外环调节;而取电容电流反馈,负载扰动在内环就可以得到及时的抑制。由于没有检测电感电流iL ,电感等效电阻无法解耦,其动态输出特性在低频段会受到一定影响。
图5 电容电流反馈控制框图
评论