关 闭

新闻中心

EEPW首页 > 工控自动化 > 设计应用 > 基于神经网络技术的虚拟传感器温度补偿系统

基于神经网络技术的虚拟传感器温度补偿系统

作者: 时间:2011-03-03 来源:网络 收藏

1.2 样本数据归一化处理
神经网络所处理的数据应是在-1和+1间的归一化数据,因此采用如下公式进行输出数据的归一化处理:

b1.jpg

本文引用地址:https://www.eepw.com.cn/article/162357.htm

式中,b.JPG为第m个样本神经网络的输入、输出归一化值;Xim和Om为第m个样本的输入输出标定值,本文中i=1,2;Ximax和Ximin为第i个输出最大、最小标定值。
1.3 神经网络的结构与训练
BP神经网络结构:

d.JPG
基于该系统采用3层BP神经网络,输入层i=1,2,共有2个节点,分别输入压阻和温度传感器的输出电压值Up和Ut。隐层节点数j=1,2,…,l可在3~30范围内选择,视补偿效果而定。输出层节点k=1,为一个节点,表示输出压力值Pt。

温度补偿系统BP神经网络Ot和分别为归一化的网络输出的计算值与标定值;m为样本序号;M为样本总数;训练的样本数越多,网络的计算结果Ot的偏差越小。根据标定实验提供的学习样本,采用BP算法学习修正网络的权值和阈值,直到满足精度要求为止。训练后的神经网络仍不能使用,必须使用附加样本进行性能验证,如不能满足要求,就需要重新训练网络,所以神经网络的训练是一个反复的过程。
1.4 学习算法的图形化编程
在LabVIEW中要实现神经网络,可通过多种方式实现:利用CIN节点调用外部编译好的C或者C++程序;利用MATLAB Script节点编辑或调用MATLAB程序;利用LabVIEW本身的图形编程语言编程实现。
同上述两种方法相比,用LabVIEW本身的图形语言来编程有很多的优势。LabVIEW的G程序是独立于运行平台的,不需要依赖其他软件。而且作为一种图形化的、数据驱动的程序语言,LabVIEW可以更方便地实现给定的算法,程序更加清晰明了,修改起来也更加方便。同时利用子程序技术,可以大大提高程序的利用率。基于此,本文采用图形编程的方法来实现神经网络控制。图3为实现BP算法的LabVIEW程序。

o.JPG

2 系统设计与实现
系统使用NI公司的LabVIEW和PCI-MIO-16E-1多功能数据采集卡实现温度补偿系统。在LabVIEW平台下开发出“虚拟传感器参数检测仪”,完成数据的采集与预处理。在此基础上嵌入MATLAB程序进行神经网络运算。
2.1 面板设计
前面板主要由两部分组成:神经网络训练模块和数据保存模块。神经网络训练模块执行压阻传感器的温度补偿;数据保存模块将训练后的相关数据进行保存并写入文件中。
2.2 程序流程图设计
在LabVIEW中,流程图是程序运行的基础。流程图主要完成前面板上各个部分的相应功能,包括执行MATLABScript操作和While Loop操作。



关键词: 虚拟仪器 传感器

评论


相关推荐

技术专区

关闭