博客专栏

EEPW首页 > 博客 > NÜWA:女娲算法,多模态预训练模型,大杀四方!

NÜWA:女娲算法,多模态预训练模型,大杀四方!

发布人:计算机视觉工坊 时间:2021-12-15 来源:工程师 发布文章

1.png

论文地址:https://arxiv.org/abs/2111.12417

源代码:https:// github.com/microsoft/NUWA

一、前言

今天分享的论文,主要提出了一个统一的多模态预训练模型,称为NÜWA,可以为各种视觉合成任务生成新的或操纵现有的视觉数据(即图像和视频)。针对不同场景同时覆盖语言、图像和视频,设计了3D Transformer编码器-****框架,不仅可以将视频作为3D数据处理,还可以分别将文本和图像作为1D和2D数据进行适配。还提出了3D Nearby Attention(3DNA)机制来考虑视觉数据的性质并降低计算复杂度。在8个下游任务上评估NÜWA。与几个强大的基线相比,NÜWA在文本到图像生成、文本到视频生成、视频预测等方面取得了最先进的结果。此外,它还显示了令人惊讶的良好的文本零样本能力——引导图像和视频处理任务。

2.png

8个任务的案例

二、背景

如今,网络变得比以往任何时候都更加视觉化,图像和视频已成为新的信息载体,并已被用于许多实际应用中。在此背景下,视觉合成正成为越来越受欢迎的研究课题,其目的是构建可以为各种视觉场景生成新的或操纵现有视觉数据(即图像和视频)的模型。

自回归模型【Auto-regressive models】在视觉合成任务中发挥着重要作用,因为与GAN相比,它们具有显式的密度建模和稳定的训练优势。早期的视觉自回归模型,如PixelCNN、PixelRNN、Image Transformer、iGPT和Video Transformer,都是以“pixel-by-pixel”的方式进行视觉合成的。然而,由于它们在高维视觉数据上的高计算成本,这些方法只能应用于低分辨率的图像或视频,并且难以扩展。

最近,随着VQ-VAE作为离散视觉标记化方法的出现,高效和大规模的预训练可以应用于图像的视觉合成任务(例如DALL-E和CogView) 和视频(例如GODIVA)。尽管取得了巨大的成功,但此类解决方案仍然存在局限性——它们分别处理图像和视频,并专注于生成它们中的任何一个。这限制了模型从图像和视频数据中受益。

三、NÜWA的表现

Text-To-Image(T2I)

3.png

一只戴着护目镜,盯着摄像机的狗

4.png

Sketch-To-Image (S2I)

5.png

草图转图片任务,就是根据草图的布局,生成对应的图片

Image Completion (I2I)

6.png

图像补全,如果一副图片残缺了,算法可以自动“脑补”出残缺的部分

7.jpg

Image Manipulation (TI2I)

8.png

图片处理,根据文字描述,处理图片

例如:有一副草原的图片,然后增加一段描述:一匹马奔跑在草原上,然后就可以生成对应的图片。

9.png

Video

10.png

四、新框架

11.png

NÜWA模型的整体架构包含一个支持多种条件的 adaptive 编码器和一个预训练的****,能够同时使图像和视频的信息。对于图像补全、视频预测、图像处理和视频处理任务,将输入的部分图像或视频直接送入****即可。

12.png

而编码****都是基于一个3D NEARBY SELF-ATTENTION(3DNA)建立的,该机制可以同时考虑空间和时间轴的上局部特性,定义如下:

13.png

W 表示可学习的权重,X 和 C 分别代表文本、图像、视频数据的 3D 表示。

3DNA考虑了完整的邻近信息,并为每个token动态生成三维邻近注意块。注意力矩阵还显示出3DNA的关注部分(蓝色)比三维块稀疏注意力和三维轴稀疏注意力更平滑。

3D DATA REPRESENTATION

为了涵盖所有文本、图像和视频或其草图,研究者将它们全部视为标记并定义统一的 3D符号X∈Rh×w×s×d,其中h和w表示空间轴(分别为高度和宽度)中的标记数量,s表示时间轴上的标记数量,d是每个标记的维度。

3D NEARBY SELF-ATTENTION

基于之前的3D数据表示定义了一个统一的3D Nearby Self-Attention (3DNA) 模块,支持自注意力和交叉注意力。首先给出方程中3DNA的定义:

14.png

并在如下等式中介绍详细的实现。

15.png16.png17.png

3D ENCODER-DECODER

开始介绍基于3DNA构建的3D编码-****。为了在C∈Rh′×w′×s′×din的条件下生成目标Y∈Rh×w×s×dout,Y和C的位置编码通过考虑高度、宽度和时间轴的三个不同的可学习词汇更新。

18.png

然后,条件C被输入到具有L 3DNA层堆栈的编码器中,以对自注意力交互进行建模,第l层在等式中表示:

19.png

同样,****也是一堆L 3DNA层。****计算生成结果的自注意力以及生成结果和条件之间的交叉注意力。第l层表示如下等式。

20.png

五、实验简单分析

21.png22.png

其他实验可在论文中获取!

*博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。



关键词: 深度学习

相关推荐

技术专区

关闭