新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 基于功率MOSFET的锂电池保护电路设计

基于功率MOSFET的锂电池保护电路设计

作者:时间:2014-10-31来源:电子产品世界收藏

  (2)关断阶段

本文引用地址:http://www.eepw.com.cn/article/264713.htm

  如图2(b)所示,保护电路工作后,开始将关断,在关断过程中消耗的功率为POFF = V * I,由于关断时电压和电流都很高,所以功率很大,通常会达到几千瓦以上,因此很容易因瞬间过功率而损坏。同时,MOSFET在关断期间处于饱和区,容易发生各单元间的热不平衡从而导致MOSFET提前失效。

  提高关断的速度,可以减小关断损耗,但这会产生另外的问题。MOSFET的等效电路如图4所示,其包含了一个寄生的三极管。在MOSFET短路期间,电流全部通过MOSFET沟道流过,当MOSFET快速关断时,其部分电流会经过Rb流过,从而增加三极管的基极电压,使寄生三极管导通,MOSFET提前失效。

  因此,要选取合适的关断速度。由于不同MOSFET承受的关断速率不同,需要通过实际的测试来设置合适的关断速度。

  

 

  图4:MOSFET等效电路

  图5(a)为快速关断波形,关断时通过三极管快速将栅极电荷放掉从而快速关断MOSFET,图5(b)为慢速关断电路,在回路中串一只电阻来控制放电速度,增加电阻可以减缓关断速度。

  

 

  图5:功率MOSFET关断电路。(a) 快速关断电路;(b) 慢速关断电路。

  

 

  图6:AOT266关断波形。(a) 快速关断波形;(b) 慢速关断波形

  AOT266为AOS新一代的中压MOSFET,其耐压为60V,RDS(ON)仅为3.2毫欧,适合在磷酸铁锂电保护中的应用。图6(a)为AOT266在不正确的设计时快速关断的波形,AOT266在快关断过程中失效,失效时其电压尖峰为68V,失效后电流不能回零,其失效根本原因是关断太快。图6(b)为使用正确的设计、放电电阻为1K时的慢速关断波形,MOSFET的关断时间达到13.5us,电压尖峰为80.8V,但MOSFET没有失效,因此慢速关断在这种应用中可以提高短路能力。

  (3)雪崩阶段

  在MOSFET关断过程的后期,MOSFET通常会进入雪崩状态,如图2(b)中的雪崩阶段。关断后期MOSFET漏极电压尖峰为VSPIKE = VB + LP * di/dt,回路的引线电感LP和di/dt过大均会导致MOSFET过压,从而导致MOSFET提前失效。

  功率MOSFET的选取原则

  (1)通过热设计来确定所需并联的MOSFET数量和合适的RDS(ON);

  (2)尽量选择较小RDS(ON)的MOSFET,从而能够使用较少的MOSFET并联。多个MOSFET并联易发生电流不平衡,对于并联的MOSFET应该有独立的并且相等的驱动电阻,以防止MOSFET间形成震荡;

  (3)基于最大短路电流、并联的MOSFET数量、驱动电压等选择合适gFS的MOSFET;

  (4)考虑在关断后期的电压尖峰, MOSFET的雪崩能量不能太小。

  小结

  在电动车磷酸铁保护应用中,短路保护设计和整个系统的可靠性直接相关,因此不但要选择合适的功率MOSFET,而且要设计合适的驱动电路,才能保证功率MOSFET的安全工作。


上一页 1 2 下一页

关键词: MOSFET 锂电池 MOSFET

评论


相关推荐

技术专区

关闭