新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 以全新的多核SoC架构进行LTE开发

以全新的多核SoC架构进行LTE开发

作者:时间:2011-06-29来源:网络收藏
技术通过更有效的传输以提高数据速率,提供功能强大的新设备来提升移动用户的体验。对于基站厂商及其供应商而言,变革的同时也提出了新的技术挑战。有效支持4G系统需要设计的多项创新,这些创新促使业界采用SoC架构,以支持这类系统。本文将探讨德州仪器(TI)的全新SoC架构如何达到4G系统的关键功能。

概述

蜂窝网络的数据使用正迅速成长,基础设备厂商亦期待4G标准,以便为移动用户提供更大的容量及更好的使用体验。3GPP所开发的LTE已被许多运营商选择为无线基站及手机的新一代解决方案。LTE是3GPP标准第8版UMTS的提升。LTE一般称为4G标准,是目前无线传输数据的重大变革。

LTE采用OFDMA(正交频分多址)技术,而3G技术则采用CDMA(码分多址)技术,此一变革可透过多天线信号处理达到较高的频谱效率,并为较宽谱频带宽提供更多支持。

在OFDMA中,快速傅立叶转换(FFT)将可用频宽分割成许多正交的较小频宽。快速傅立叶逆转换(IFFT)可重建频带。FFT及IFFT是经过详加定义的算法,当其采样数为2的乘幂时即可有效执行。OFDM系统常见的FFT采样数为512、1024及2048,较小的采样则为128及256。支援的频宽为5、10、15及20MHz。该技术的优点之一是能简易地适用于不同的频宽。

LTE也能够使用先进的多天线信号处理技术。其中两项常用的技术为多入多出()处理及波束成形。在中,系统发现从其中一个传输天线接收到的信号会与第二个天线接收到的信息有极大的差异,这在室内或人口密集的大城市相当常见,因为收发器及接收器之间有相当多反射与多重路径。在这样的情况下,各个天线在相同频率下会传输不同的信号,在经由接收器信号处理即可复原。

LTE对于SoC架构的影响

这些新的LTE特性显现出基站必须以较短的延迟及较多的弹性支持较高的吞吐量。这对系统设计的许多层面形成极大的压力。为了满足这些需求,TI开发出全新的SoC架构,其中许多内建的组件可满足LTE蜂窝基站的需求(见图1)。

(电子工程专辑)
图1:德州仪器的架构。

TI全新的架构采用先进的核技术,频率高达1.2GHz,而且总处理能力达到256GMAC,远高于当前市面的(见图2)。该内核支持定点及,其中的指令集完全与TI的TMS320C64x+ DSP指令集向下兼容。定点及浮点运作的处理速度均超过1GHz,显示DSP领域出现真正的变化。开发人员将不再需要在定点的原始速率及浮点的精度之间抉择,如今已可两者兼得,因为TI全新的架构支持在定点及浮点指令之间切换。

(电子工程专辑)
图2:德州仪器全新的架构采用先进的DSP内核技术,频率速度高达1.2GHz。

处理涉及针对相同频谱的信号进行数据译码。相较于此一程序的算法,由于典型N变量的N是未知数,需要矩阵求逆法才能解决。将矩阵求逆引入处理链,对于定点处理器的性能深具影响。这是因为矩阵求逆容易受到精度限制的影响,导致16位及32位定点运作的性能不佳,甚至无法运作。程序设计人员一般都必须使用虚拟浮点法来达到所需的精度,同时尝试保留足够的处理能力来执行系统。

TI全新的架构针对业界最高速DSP引进原生浮点支持,可谓是一大突破。浮点处理器的速度一般比定点处理器慢,因此不适用于蜂窝基站这样的高性能场合。结合原生浮点支持及领先业界的C64x+定点架构后,TI带来定点及浮点两者的最高处理效能,进而对LTE系统发挥影响。程序设计人员可使用优化的16位程序代码,其中精度不是影响的因素,而且对于需要高精度的算法可达到IEEE浮点精度,例如MIMO均衡器。这使得LTE系统架构的效率相当高,使得基站可达到最低的功耗、最高的效能及最大的输出量。

浮点算法设计的另一项优点是能够简易地开发和升级算法,并导入实际的系统中。通信系统的一般设计流程是先根据计算机模型开发算法,然后将其用于初始的系统部署。随着部署的范围及运用不断扩大,工程人员需要收集实际数据提供给算法团队,以供提升系统性能。这些全新的算法通常是以本身是浮点运作的MATLAB实现进行开发。其中的难题在于将这些浮点MATLAB算法转换为定点DSP,同时维持算法及系统两者的性能,因为不灵活的算法会用尽系统资源,而降低整体的基站性能。

如果涉及复杂的矩阵处理,将程序代码从MATLAB导入实际系统通常需要几周或几星期的时间。透过TI全新架构的原生浮点支持,便不需要进行这整个程序。透过使用浮点C语言程序代码以及直接编译于TI的DSP,即可从MATLAB导入程序代码。

其重要性对于LTE系统的系统设计人员及程序设计人员来说,并非言过其实。随着LTE演变为LTE-A及未来的标准,浮点很可能在未来变得更加重要,因为多天线信号处理的趋势显得日益复杂。


上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭