新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 解决广角镜头梯形失真及桶形失真的技术研究

解决广角镜头梯形失真及桶形失真的技术研究

作者:时间:2013-11-25来源:网络收藏
本文以飞思卡尔智能车大赛为背景,使用飞思卡尔(Freeseale)生产的16位微控制器MC9S12XS128作为控制核心,制作一个能巡线快速行驶的摄像头小车。由于摄像头光轴与地面呈一定夹角,于是其成像存在;为了扩大视野,越来越为很多队伍所采用,于是又存在。这两种失真,是每个采用的摄像头队伍都要遇到的问题。很多队伍都回避这个问题,直接采用图像预处理后的像素点进行控制。但若将像素点转换为实际物理坐标,无疑更直观,对程序的编写或建模带来很大的方便,并且本文提出的这个方法,可有效解决这两种失真,实际操作并不复杂。

  各队解决方案综述

  文献[1]提出的方法是:可以通过对于每行提取的道路位置通过一个线性修正来消除,可通过实验的方式确定线性补偿的系数。但是该实验方法比较繁杂,并且不能消除

  文献[2]制作了一个图像标定板,如图1所示。

解决广角镜头梯形失真及桶形失真的技术研究

  其原理是:图1(a)中阴影部分是车体放置的位置。在标定板上等间距地贴了许多黑线,给标定板拍照后,就可以知道实际中的位置与图像中的位置的相互关系。这个方法由于黑线有一定宽度,所以会存在较大误差。

  文献[3]采用非均行采集的方案。所谓非均行采集是与均行采集对应的。在均行采集中,AD模块所采集的行均匀分布于摄像头输出的图像中。而非均行采集则是指,AD模块所采集的行按某种规则非均匀地分布在原始图像中,而这种规则是保证采集得到的图像在纵向上(小车中轴方向)与现实景物不畸变。然后再确定每一行的横向畸变系数。

解决广角镜头梯形失真及桶形失真的技术研究

  如图2所示,非均行采集时,远处采得密,近处采得稀。由于摄像头安装方式在实验时会经常变动,以确定最佳俯角和最佳高度,每当变动就需要重新标定。这个方案就不大方便了。文献[4]建立了一个光路几何模型图,如图3所示。

解决广角镜头梯形失真及桶形失真的技术研究

  实验方案:量取摄像头架固定螺钉的高度H与摄像头中心相对于竖直杆的偏转角度(俯角)θ。由于光学中心的计算完全由这两个数据及近端距固定杆的距离S(即测量保险杠距固定杆的距离S0和近端距保险杠距离S'相加得到,也可直接在实验板上测量由近端黑线到摄像头固定杆的距离S)确定,因此要做到越精确越好。由O点做垂线长度为H至点A,做水平线AB,截取AD长为S,DB过O点做与垂直线成θ的射线交AB于C,过D做DE垂直于OC,并使OC为DE的垂直平分线,连接BE并延长,交OC与O’,则O’为光学中心。从图上能算得O’距底边距离为H’,俯角不变。将实验板垂直放置,做出边长为A1的正方形标定区域,即图3中的DE平面,将摄像头水平对向实验板中心C,摄像头架固定螺钉距实验板距离为H1。读出标定实验板上特征点的相应像素点。可以得到图4中(X,Y)与像素点(U,V)的关系(U为行数,V为列数)。

解决广角镜头梯形失真及桶形失真的技术研究

  由于实验平面与真实视野平面之间是纯几何关系,因此这部分转换函数关系可以用几何推导。 其公式较复杂,在这里不一一列出。

  其公式最大的弊端在于有很多sin()、cos()等三角函数运算,但单片机做这种运算会花费大量时间,所以本应尽量避免出现三角函数、开方等运算。而且,若采用或摄像头架得较低时,B点将会距A点很远而找不到B点。所以该方法也不具通用性。实验本身也比较复杂。

摄像头相关文章:摄像头原理

上一页 1 2 下一页

关键词: 广角镜头 梯形失真 桶形失真

评论


相关推荐

技术专区

关闭