新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 妙用\"虚拟远端采样\"改善负载调节性能(一)

妙用\"虚拟远端采样\"改善负载调节性能(一)

作者:时间:2018-09-10来源:网络收藏

当电源和负载之间存在较大压降时,准确调节负载电压可能很难。即使稳压器在自己的输出端产生非常稳定的电压,负载电流的变化也会影响沿导线产生的IR压降,从而在负载端导致极大的电压波动(图1)。

本文引用地址:http://www.eepw.com.cn/article/201809/388747.htm


图1:通过电阻性互连线实现最简单的模型。

在负载侧改善调节的传统解决方案包括增加额外的导线以进行远端(图2),但是增加额外的导线并不是一种可行的理想方案。一种新的控制方法是“远端(VRS)”,该方法很容易地取代了常规解决方案,并可避免常规解决方案的隐患,而且在某些情况下还解决了以前无法解决的问题。


图2:远端解决问题,但是在分压器上增加了导线。

传统的负载端调节方案

远端采样解决了在长导线末端保持负载稳定的问题,这种方法比直接远端电压采样、压降补偿、和负载端调节等常规远端采样方法更易采用,且效果更好。

第一种传统方法是直接远端采样(图2),该方案可实现极好的负载端调节,但是需要两对导线:一对提供负载电流,另一对测量负载端的电压,以便实现恰当的调节。远端采样需要先见之明,必须设计到系统里。除非有一对额外的检测导线准备好待用,远端采样不可能事后实现。

第二种传统方法是压降补偿,这不需要额外的导线,但是却需要仔细估计负载线路的压降。对电源电压进行调节,以补偿估计的互连线压降。不过,既然压降仅是估计值而不是测量值,那么这种方法的准确性值得商榷。

第三种传统方法涉及直接在负载端放置一个稳压器。这既保证了准确度,又简化了布线,但是稳压器在负载端占用宝贵的空间、降低了电源系统的总体效率且靠近负载的功耗升高了。在工业和汽车系统中,在负载端的严酷环境中放置一个稳压器也许是不可能的。

VRS 避开了所有这些限制,同时在多种条件下实现了令人赞叹的效果。

什么是 VRS?

图3显示了一个简化的远端感测系统原理图,由一个电源或通过电阻性互连线(由导线和连接器组成)驱动负载的稳压器组成。如果不采用VRS,电源电压 (VSUPPLY)和DC电流(ILOAD) 是已知的,但是没法确定多少电压提供给了负载,多少电压损失在导线中,因此无法实现恰当的负载电压调节。


图3:虚拟远端采样易于实现。

LT4180 VRS 通过查询线路阻抗和动态补偿压降解决了这个问题。该器件通过使输出电流在所需输出电流的95%和105%之间交替变化来工作。换句话说,LT4180强制电源提供一个DC电流加上一个峰峰值幅度等于DC电流10%的电流方波。去耦电容器C(通常在非VRS系统中确保低阻抗,以实现恰当的负载瞬态)还承担了一个附加的角色 ──从VRS方波中滤除电压瞬态。

因为C的大小可以改变,以在方波频率上产生“AC 短路”,所以在电源端产生的查询电压方波等于 VSUPPLY(AC) = 0.1 ? IDC ? R,以VP-P来衡量。这个在电源端测得的电压方波峰峰值幅度等于DC导线压降的1/10。这不是估计值,它是导线上通过全部负载电流时直接测量的压降。通过小信号处理,从这个AC信号中产生了一个DC电压,这个 电压引入电源的反馈环路,以提供准确的负载调节。

那么VRS有多有效?

LT4180的静态负载调节如图4所示。在这种情况下,负载电流从零开始升高,直至在导线中产生一个2.5V的压降为止。负载端电压在最大电流时仅比电流为零时下降73mV。甚至导线内压降等于标称负载电压的50%时,负载端的电压仍然保持在无负载电流值的1.5%之内。导线压降不那么大时,会产生更好的结果。


图4:在极宽的稳压器至负载导线压降范围内,LT4180的静态负载调节令人印象深刻。

VRS极度灵活

LT4180几乎可与任何电源或稳压器一起使用:线性或开关式、隔离或非隔离式。电源可以同步或不同步至LT4180。为了满足各种系统和电源需求,VRS工作频率可以在超过以千计的范围内调节。它还提供扩频工作模式,以部分起到抗单音干扰的作用。其较大的输入电压范围简化了设计。

用 VRS 解决以前不可能解决的问题

除了提供可替代常规方法的解决方案,VRS还在电池充电、工业和以太网、照明、测井以及其它应用领域创造了以前不可能获得的机会。

改善电池充电器

图5示意了一个粗略的电源系统,用于笔记本电脑、PDA、蜂窝电话或便携式娱乐设备。一个外部电源/电池充电器用来最大限度地减小便携式电子设备的尺寸。充电器仅在该设备关闭且没有吸取电流时才能正确工作。当电池接近满容量时,电池充电电流(IBAT)接近为零。如果I=0,那么电池充电器电压VSUPPLY等于电池浮充电压,而且充电终止功能正确启动。


图5:一种(有缺点的)电池充电架构旨在用一个外部电池充电器减小设备尺寸。

但是如果系统稳压器吸取电流,会发生什么问题?电池电压VBAT可能低于所需电池充电器电压VSUPPLY,因此使充电速度变慢,甚至完全停止充电。互连线电阻不可能降到足够低来解决这个问题。1%的锂离子浮充电压准确度要求转换为42mV浮充电压误差(就单节锂离子电池而言)。因为还存在其它浮充电压误差源,所以导线压降必须保持远低于这个值。

传统解决方案采用像图6所示那样的复杂架构,这种架构在设备中纳入了充电器和一个电源路径控制器。尽管这样可以降低与导线有关的充电误差,但是也增大了设备的尺寸和设备内部的功耗,因为充电器和电源路径控制器必须放在设备内部。


图6:未用VRS的典型电池充电架构。

图7显示采用 VRS 时不打折扣的解决方案。充电器电压在设备端得到恰当的控制,不受负载电流(I)影响,因此可以使用一个外部电池充电器电源,电源路径控制器可以去掉。


图7:以VRS实现的简化电池充电方案,该方案能减小设备的总体尺寸,实现图5所示解决方案不可能实现的效果。

在以太网供电应用中非常容易补偿线路压降

以太网供电和工业应用也受益于VRS。VRS允许低压设备(具大工作电流)在CAT5和CAT6电缆上运行,而不会产生长导线引起的压降。甚至10V至20V的线路压降也可以补偿,从而允许在远端使用简单的线性稳压器或不使用稳压器。

下接:妙用虚拟远端采样改善负载调节(二)

更多资讯请关注:21ic模拟频道



评论


相关推荐

技术专区

关闭