新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 基于SOPC的简易运动控制芯片方案

基于SOPC的简易运动控制芯片方案

作者:时间:2017-06-06来源:网络收藏

现在的器已经发展到了以专用(ASIC)或FPGA作为核心处理部件的开放式器。这样的解决方案突出的特点,是让的处理部分以独立的、硬件性方式展开,增加系统的性能和可靠性,从而有效地解决了以单纯的MCU或DSP系统的处理带宽限制,以及用户系统软件和运动控制软件混杂性的问题。
业界也早已出现了各种类型的运动控制专用,虽然有较高的功能、性能,但一般都比较复杂,使得客户应用起来非常困难。
用户们常常需要一种容易使用的运动控制与通用MCU/CPU结合起来的系统方案,用以面向更一般性的或中低端的应用场合。这样的方案里,运动控制芯片部分可以担当关键的马达控制信号发生功能,又可以拥有较高的性能和其他的系统性接口资源(若是利用8253/8254之类的计数器,就显得捉襟见肘,计数长度太短,且没有其他资源);而在MCU/CPU部分可以通过一些简单的控制指令完成对马达运动的控制,更多的资源用来处理系统界面或应用软件。
简单而言,就是需要一个方案有效地协调了运动控制系统的软硬件的分工,软件部分方便客户开发,硬件部分确保系统性能。
深圳市斯迈迪科技发展有限公司(Smarteer)推出的SM1000系列运动控制芯片就是上述需求的解决方案。它是在高性能系列运动控制FPGA/芯片—SM5000方案后,经过不断的技术积累和市场调查后,特地为中低端市场应用推出的。
SM1000是一个简易的运动控制芯片系列,它提供长达32位的可编程计数和脉冲发生的功能,脉冲频率可以高达10M赫兹以上,同时在芯片内部增加了许多系统性的资源,比如:内置3-8译码器、地址锁存器、矩阵键盘扫描接口和通用I/O等。由于芯片是技术方案,因此还可以根据客户的具体需求做定向化的设计。
SM1000简易而又方便于客户应用,它面向更广泛、更一般的运动控制应用领域。利用它结合MCU/CPU可以便捷地组建成一个运动控制系统,尤其是一些嵌入式、系统集成的应用系统。
SM1000非常适合于独立多轴的马达控制场合,同时结合控制软件也可以非常灵活地实现常见的加减速运动控制,甚至多轴联动控制。
以下是SM1000系列芯片技术特点和应用介绍。
一、SM1000芯片方案的技术指标
⑴ 输入时钟CLK频率最高到78MHz;
⑵ 1-4路32位计数器,可达计数范围为:1~ 2,147,483,647;
⑶ 1-4路32位直接脉冲分频器,可设置频率系数范围为:1~ 2,147,483,647;
⑷ 1-4路正/反向脉冲输出,可接成差分输出;
⑸ 1-4路正/反向脉冲输出有效指示,可接成差分输出;
⑹ 最高输出脉冲频率为:CLK/64(SM1001不同);
⑺ 其他功能:
a) 内置3-8译码器,输出7个附加片选信号;
b) 8通用输入+8通用输出;
c) 可接8x8矩阵键盘,直接读取按键编码/有效值;
d) 8位数据接口(内置地址锁存,可以直接接MCS51 CPU)。
二、SM1000系列规格

三、SM1000功能框图

图1. SM1000功能框图


1. 复位
2. 锁存
3. 总线
4. 2-4路计数器
5. 2-4路32位脉冲分频器
6. GPIO
7. 3-8译码器
8. 8x8矩阵键盘
四、功能引脚介绍

五、应用方向举例
1. 步进马达控制器
2. 轻纺设备:缝纫机/绣花机等
3. 机器手/臂
4. 空间座标测量/定位系统
5. 经济型通用运动控制器
6. 钻孔、铣边设备
7. 其他

本文引用地址:http://www.eepw.com.cn/article/201706/349512.htm


六、编程应用介绍
A、CPU接口
该芯片采用通用8051 8位地址/数据复用接口。由于芯片内置了地址锁存器,因此可以直接与8051单片机地址/数据总线相连,而不需要通过地址锁存器分离出地址和数据总线。另外,该芯片内置了一个3-8译码器,可以输出7个片选信号,以供用户扩展地址译码用。这样,极大地方便了用户基于8051单片机的应用系统设计。整个接口只需要14根线。包括:
a) 8根地址/数据总线:AD0~7
b) 3根片选线:CS1~3
c) 1根地址锁存允许线:ALE
d) 1根读允许线:RD_n
e) 1根写允许线:WR_n
输出7根片选线,地址划分见地址分配表。
B、地址分配

C、CPU读/写操作
读写脉冲计数器:
脉冲计数器的值可以用命令直接写,但要读出时,就必须先用锁存脉冲计数器值命令,先锁存起来,再用命令直接读;如下所示。
写脉冲计数器操作格式:
a、(*地址)= 数据 ;
其中:地址=基地址+0+nn*16+mm; nn=(0~3)为通道号,mm=(0~3)为字节地址;
数据为8位字节数据。
读脉冲计数器操作格式:
a、(*锁存地址)= 任意数据;
b、变量=(*读地址);
其中:锁存地址=基地址+10+nn*16; nn=(0~3)为通道号,10为锁存脉冲计数器地址;
锁存命令的数据为8位字节任意数据,其值无意义。
读地址=基地址+0+mm; mm=(0~3)为字节地址;
注意:脉冲计数器长度为32位,允许全范围设置:0x00000000~0xFFFFFFFF。实际输出脉冲个数由下面公式给出:
脉冲个数=(脉冲计数器值+1)/2;
当脉冲计数器值为最大值0xFFFFFFFF时,允许最大脉冲个数为2,147,483,648。
当脉冲计数器值为最小值0x00000001时,允许最小脉冲个数为1。
其中,脉冲计数器值应该为奇数,如为偶数,则最后一个脉冲宽度很窄。输出脉冲为对应频率的方波。
写脉冲频率数据:
写脉冲频率数据操作格式:
a、(*地址)= 数据 ;
其中:地址=基地址+4+nn*16+mm; nn=(0~3)为通道号,mm=(0~3)为字节地址;
数据为8位字节数据。
32位情况:脉冲频率值长度为32位,允许设置范围为:0x00000001~0xFFFFFFFF。实际输出脉冲频率由下面公式给出:
当脉冲频率值0x00800000 时:
脉冲频率=(输入时钟频率/228)*脉冲频率值;
当脉冲频率值≥0x00800000 时:
脉冲频率=(输入时钟频率/(236+228)*脉冲频率值。
24位情况:脉冲频率值长度为24位,允许设置范围为:0x000001~0xFFFFFF。实际输出脉冲频率由下面公式给出:
当脉冲频率值0x00400000 时:
脉冲频率=(输入时钟频率/225)*脉冲频率值;
当脉冲频率值≥0x00400000 时:
脉冲频率=(输入时钟频率/(233+225)*脉冲频率值。
启动脉冲通道工作:
启动脉冲通道工作操作格式:
a、(*地址)= 数据 ;
其中:地址=基地址+8;
数据为8bit字节,作为允许启动标志,定义为:
D0----为1时,允许通道1启动,为0时不启动;
D1----为1时,允许通道2启动,为0时不启动;
D2----为1时,允许通道3启动,为0时不启动;
D3----为1时,允许通道4启动,为0时不启动。
停止脉冲通道工作:
停止脉冲通道工作操作格式:
a、(*地址)= 数据 ;
其中:地址=基地址+9;
数据为8bit字节,作为允许停止标志,定义为:
D0----为1时,允许通道1停止,为0时不停止;
D1----为1时,允许通道2停止,为0时不停止;
D2----为1时,允许通道3停止,为0时不停止;
D3----为1时,允许通道4停止,为0时不停止。
回读数据锁存:
CPU要读相应功能的数据,就必须先锁存其数据,才能读;否则,只能读取上次锁存的数据。共有下面三种功能数据:
1. 脉冲计数器值:32bit;
2. 通用输入口值:8bit;
3. 按键编码值: 7bit;
CPU读数据是按8 bit字节读方式进行的,32 bit脉冲计数器值需要读4次,可按0~3任意顺序读取。8 bit值只能从地址0读取。格式为:
a、(*锁存地址)= 任意数据;
b、变量=(*读地址);
其中:锁存地址和读地址,可参见地址分配表3。
8/8位通用输入/输出口:
该芯片包含8位通用输入口和8位通用输出口。
8位通用输入口读命令为:
a、(*锁存地址)=任意数据;
b、变量=(*读地址);
其中:锁存地址=基地址+12;
读地址=基地址+0;(所有读地址相同)
8位通用输出口写命令为:
a、(*写地址)= 数据;
其中:写地址=基地址+11;
写数据为8位字节数据。


8x8键盘接口:
该芯片支持8X8矩阵键盘,自动扫描键盘,识别按键键码,CPU通过接口可读取当前按键编码值。命令如下:
a、(*锁存地址)=任意数据;
b、变量=(*读地址);
其中:锁存地址=基地址+28;
读地址=基地址+0;(所有读地址相同)
按键编码格式:

标志位:为1表示有键正按下,为0表示没有按键;
X:忽略;
回读码:取0~7为当前按键所对应的行(或列)编码,特指输入线(KBC_0~7);
扫描码:取0~7为当前按键所对应的列(或行)编码;特指输出线(KBS_0~7);
七、编程示例
//A、地址常量定义:(设芯片基地址为0xe000)
#define MC_sys_CLK 32000000 //定义芯片工作频率
#define MC_CNT_WR_Base_Addr (volatile unsigned char *) 0xe000 //定义计数器值写基地址
#define MC_CNT_Latch_WR_Base_Addr (volatile unsigned char *) 0xe00A //定义计数器锁存写基地址
#define MC_FRQ_WR_Base_Addr (volatile unsigned char *) 0xe004 //定义频率值写基地址
#define MC_Startup_WR_Base_Addr (volatile unsigned char *) 0xe008 //定义启动写基地址
#define MC_Stop_WR_Base_Addr (volatile unsigned char *) 0xe009 //定义停止写基地址
#define MC_GPOut_WR_Base_Addr (volatile unsigned char *) 0xe00B //定义通用输出值写基地址
#define MC_GPIn_Latch_WR_Base_Addr (volatile unsigned char *) 0xe00C //定义通用输入值锁存写基地址
#define MC_KB_Latch_WR_Base_Addr (volatile unsigned char *) 0xe01C //定义键盘编码值锁存写基地址
#define MC_ RD_Base_Addr (volatile unsigned char *) 0xe000 //定义回读值读基地址
//B、子程序片:
//0、延迟子程序:芯片读/写命令间要求有一定的定时间隔。
void delay(int n)
{ int i;
for( i = 0; i}
//1、写第n通道脉冲数值(必须为奇数)
cnt = Np*2-1;
MC_CNT_WR_Base_Addr[n*16+0] = (char)((cnt>> 0) 0x0ff);delay(10);
MC_CNT_WR_Base_Addr[n*16+1] = (char)((cnt>> 8) 0x0ff); delay(10);
MC_CNT_WR_Base_Addr[n*16+2] = (char)((cnt>>16) 0x0ff); delay(10);
MC_CNT_WR_Base_Addr[n*16+3] = (char)((cnt>>24) 0x0ff);
//2、读第n通道脉冲数值
MC_CNT_Latch_WR_Base_Addr [n*16+0] = (char)0; delay(10); //锁存第n通道脉冲数值
Cnt = MC_ RD_Base_Addr [0]; delay(10); //回读数据0字节
Cnt |= MC_ RD_Base_Addr [1]8; delay(10); //回读数据1字节
Cnt |= MC_ RD_Base_Addr [2]16; delay(10); //回读数据2字节
Cnt |= MC_ RD_Base_Addr [3]24; //回读数据3字节
if( Cnt ==0xffffffff )
{ //第n通道脉冲输出完处理
}
//3、写第n通道脉冲频率值
Nfrq= frq_pulse*0x10000000/MC_sys_CLK; //注意整数运算溢出问题
MC_FRQ_WR_Base_Addr [n*16+0] = (char)((Nfrq>> 0) 0x0ff); delay(10);
MC_FRQ_WR_Base_Addr [n*16+1] = (char)((Nfrq>> 8) 0x0ff); delay(10);
MC_FRQ_WR_Base_Addr [n*16+2] = (char)((Nfrq>>16) 0x0ff); delay(10);
MC_FRQ_WR_Base_Addr [n*16+3] = (char)((Nfrq>>24) 0x0ff);
//4、启动多个通道脉冲工作
MC_Startup_WR_Base_Addr[0] = (F0 1) | ((F11)2) | ((F22)4 | ((F33)8) ;
//5、停止多个通道脉冲工作
MC_Stop_WR_Base_Addr[0] = (F0 1) | ((F11)2) | ((F22)4 | ((F33)8) ;
//6、8位通用输出口输出
MC_GPOut_WR_Base_Addr [0] = (char)(GPOut 0x0ff) ;
//7、8位通用输入口输入
MC_GPIn_Latch_WR_Base_Addr [0] = (char)0; delay(10); //锁存通用输入口值
GPIn_V = MC_ RD_Base_Addr [0] ;
//8、7位键盘按键编码输入
MC_KB_Latch_WR_Base_Addr [0] = (char)0; delay(10); //锁存按键编码值
KBCode = MC_ RD_Base_Addr [0] ;
if(KBCode 0x80)
{
//当前有按键按下处理
}
八、基于SM1000的运动控制系统框图
在图2方案里,除了1-4轴运动控制本身之外,在板上根本不需要译码器、锁存器之类的芯片,按键扫描电路也节省了不少MCU带宽开销,数字量通用输出/输入也增加了系统的控制方便性。

图2. 基于SM1000的运动控制系统框图



关键词: SOPC 运动控制 芯片

评论


相关推荐

技术专区

关闭