新闻中心

EEPW首页 > 医疗电子 > 设计应用 > 一种人工耳蜗系统专用植入刺激芯片设计

一种人工耳蜗系统专用植入刺激芯片设计

作者:时间:2011-12-29来源:网络收藏

0 引言

本文引用地址:http://www.eepw.com.cn/article/199639.htm
是帮助传感性耳聋患者恢复听觉的一种电子装置,它把外部的声音转换为听神经需要的电刺激,将这种刺激通过植入电极刺激听觉神经,人工制造出听觉。
主要由四部分构成: (1)语音处理器,按照一定的算法将声音转换成适当的电信号;(2)传输,用来将电信号和体内电路所需的能量从体外传送到体内;(3)植入刺激电路,用来处理体外传入的电信号并产生刺激听神经的电脉冲;(4)电极(组),用来直接刺激听觉神经。其中植入刺激电路、接收天线和电极组通过外科手术植入耳内。
植入刺激电路是的核心部件,早在1800 年,Alessandro Volta 在实验时发现将通电的电极插入双耳时“使头内产生轰响声”,随后会听到“一种如同粘液沸腾的声音”。此后人类便开始了对电刺激恢复听觉的研究[1];到1960 年FBSimmons等人[2]使用了一种单通道刺激,在耳蜗内插入一根电极,用电脉冲直接刺激听神经,使患者可以产生音调感觉;此后,受到电极阵列技术条件和无法实现小面积低功耗的植入刺激电路的限制[3],人工耳蜗的发展很慢;20 世纪80 年代,电极技术有了较大突破,可以在一根载体中放入4 根或者更多的独立电极[4],同时集成电路的制造和设计技术也有了很大的进步,植入芯片由分立元件实现发展到专用集成电路实现,功耗和面积都得到了很大程度的降低,越来越多的人工耳蜗开始出现。目前三家商用的人工耳蜗系统[5]的植入刺激电路普遍采用数模混合专用集成电路设计实现。
本文介绍一种适用于16 通道、电流脉冲刺激方式的人工耳蜗系统[67]的体内刺激电路。
1 芯片结构和功能
植入刺激电路的结构如图1 所示。
1.gif
图1 植入刺激电路结构示意图
植入刺激电路通过接收线圈接收体外电路发射的信号,从中提取出数据和能量,并对数据解码形成相应的脉冲刺激电流刺激听神经。具体各部分的功能为:(1)接收线圈负责接收体外线圈发射的调制信号;(2)整流滤波电路对接收线圈接收到的信号进行整流、滤波,得到12 V 的高压电源电压VCC;(3)高压带隙基准模块产生低压降稳压器使用的12 V 参考电源电压Vref; (4)低压降稳压器负责产生33 V 的常压电源VDD给其他常压模块供电;(5)上电复位电路负责在低压降稳压器输出到一定电位时产生复位信号,控制数字模块复位,进入工作状态;(6)数据时钟恢复模块将线圈接收到的信号进行处理,解调出数字控制模块所需的数据信号(data)和时钟信号(clk); (7)数字控制模块负责从数据时钟恢复模块恢复出的数据信号中提取出关于刺激电流的各种参数(刺激电极选择、刺激维持时间、刺激强度等),控制开关阵列和数模转换电路;(8)常压带隙基准源负责产生数模转换电路所需要的09 V 参考电压;(9)12 位数模转换电路根据数字控制模块提取出的刺激强度产生控制压控电流源的控制电压; (10)压控电流源负责根据数模转换电路的控制电压产生精确的刺激电流;(11)开关阵列根据数字控制模块提取出的电极序号选通待刺激的电极,并维持相应的刺激时间。
体内刺激电路有两个工作电压,12 V 高压电源VCC和3.3 V 常压电源VDD。使用12 V 高压电源的模块为高压模块,采用相应的高压工艺进行设计;使用常压电源的模块为常压模块,采用常压工艺进行设计。采用双电源既可以有效地降低电路功耗,又可以保证刺激的强度。
2 关键模块电路实现
2 1 带隙基准源
植入刺激电路中有高压和常压两个带隙基准源,二者均采用了传统的带隙结构[8],其核心电路如图2 所示。通过双极型晶体管VBE的负温度系数和不同电流密度的两个双极型晶体管的VBE之差ΔVBE的正温度系数相加产生与温度无关的基准电压,输出电压为
2.gif
隔离器相关文章:隔离器原理


评论


相关推荐

技术专区

关闭