新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 智能锂电池充电管理方案

智能锂电池充电管理方案

作者:时间:2012-07-30来源:网络收藏

1 引言

本文引用地址:http://www.eepw.com.cn/article/176628.htm

锂离子电池是上世纪九十年代发展起来的一种新型二次电池。由于锂离子电池具有能量密度高和循环寿命长等一系列的优点,因此很快在便携式电子设备中获得广泛应用,也获得了生产商的青睐。

锂离子电池主要由正极活性材料,易燃有机电解液和碳负极等构成。因此,锂离子电池的安全性主要是由这些组件间的化学反应引起。

在使用中,根据的结构特性,最高终止电压应低于4.2 V,绝对不能过充,否则会因正极锂离子拿走太多,产生危险。其充放电要求较高,一般应采用专门的恒流、恒压器进行。通常恒流充电至设定值后转入恒压充电,当恒压充电至0.1 A 以下时,应停止充电。

的放电由于内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证下次充电时锂离子能够畅通地嵌入通道。否则,电池寿命会缩短,因此在放电时需要严格控制放电终止电压。

因此,设计一套高精度锂离子充电系统对于锂离子电池应用是至关重要的。本文介绍的化锂电池充电系统是专门为锂电池设计的高端技术解决。该系统适用于锂离子/镍氢/铅酸蓄电池单体及整组进行实时监控、电池均衡、充放电电压、温度监测等,采用了电压均衡控制、超温保护等化技术,是功能强大、技术指标完善的动力电池充电系统。

2 系统构成与设计

充电系统主要由n 个(可扩充)充电模块和上位PC 机监控软件组成。支持充电过程编程,可按恒流充电、恒压充电等多种工况进行相应组合设置工作步骤,除了具有硬件过压过流保护,还允许用户定义每个通道的过电压、过电流等参数值,具备数据采集、存储、通讯及分析功能,具有掉电保护功能,不丢失数据。另外还配置锂电池系统,它主要由充电机、主控单元、数采单元和人机界面组成,硬件组成框图如图1 所示。

智能化锂电池充电系统框图

图1 化锂电池充电系统框图

3 恒流恒压源的设计

恒流恒压源采用开关电源作为主要电路,它由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM 控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如图2 所示。

开关电源组成方框图

图2 开关电源电路组成方框图

防雷单元采用压敏电阻进行保护,当有雷击,产生的高压经电网导入电源,压敏电阻两端电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上。

输入滤波电路采用电感和电容组成的双π 型滤波网络,对输入电源的电磁噪声及杂波信号进行抑制,同时也防止电源本身产生的高频杂波对电网干扰。

功率变换电路采用目前应用最广泛的绝缘栅极场效应管MOSFET 管,是利用半导体表面的声电效应进行工作的。由于它的栅极处于不导电状态,所以可以大大提高输入电阻。MOS 管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。

主回路采用正激模式,控制芯片采用电流工作模式的UC3842,电路如图3 所示。R4、C3、R5、R6、C4、D1、D2 组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI 减少,不发生二次击穿。在开关管Q1 关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1 V 时,UC3842 停止工作,开关管Q1 立即关断。 R1 和Q1 中的结电容CGS、CGD一起组成RC 网络,电容的充放电直接影响着开关管的开关速度。R1 过小,易引起振荡,电磁干扰也会很大;R1 过大,会降低开关管的开关速度。

Z1 通常将MOS 管的GS 电压限制在18 V 以下,从而保护了MOS 管。 Q1 的栅极受控电压为锯形波,当其占空比越大时,Q1 导通时间越长,变压器所储存的能量也就越多;当Q1 截止时,变压器通过D1、D2、R5、R4、C3 释放能量,同时也达到了磁场复位的目的,为变压器的下一次存储、传递能量做好了准备。IC 根据输出电压和电流时刻调整着⑥脚锯形波占空比的大小,从而稳定了整机的输出电流和电压。C4 和R6 为尖峰电压吸收回路。T1 副边为正激式整流回路。

图3 恒流恒压源主回路电路图

图3 恒流恒压源主回路电路图


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭