新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > ADI实验室电路:稳定闭环自动功率控制电路

ADI实验室电路:稳定闭环自动功率控制电路

作者:时间:2013-05-29来源:网络收藏

本文所述电路利用一个VGA (ADL5330) 和一个对数检波器 (AD8318) 提供闭环自动。由于AD8318具有较高的温度稳定性,而且AD8318 RF检波器可确保ADL5330 VGA的输出端具有同样水平的温度稳定性,因此该电路在整个温度范围都能保持稳定。该电路还增加了对数检波器,用来将ADL5330从开环可变增益转换为闭环输出电路。 AD8318与ADL5330一样,具有线性dB传递函数,因此P对设定点传递函数也遵循线性dB特性。

本文引用地址:http://www.eepw.com.cn/article/175152.htm

11.jpg

图1. ADL5330与AD8318配合在自动增益环路中工作(原理示意图:未显示去耦和所有连接)

电路描述

虽然可变增益可提供精确的增益控制,但利用一个自动增益控制(AGC)环路也可以实现对输出的精密调节。图1显示在AGC环路中工作的ADL5330。增加对数放大器AD8318后,该AGC在较宽的输出功率控制范围具有更高的温度稳定性。

ADL5330 VGA要在AGC环路中工作,必须将输出RF的样本反馈至检波器(通常利用一个定向耦合器并增加衰减处理)。DAC将设定点电压施加于检波器的VSET输入,同时将VOUT与ADL5330的GAIN引脚相连。根据检波器的VOUT与RF输入信号之间明确的线性dB关系,检波器调节GAIN引脚的电压(检波器的VOUT引脚为误差放大器输出),直到RF输入的电平与所施加的设定点电压相对应。GAIN建立至某一值,使得检波器的输入信号电平与设定点电压之间达到适当平衡。

AGC环路中工作的ADL5330与AD8318的基本连接如图 1所示。AD8318是一款 1 MHz至 8 GHz精密解调对数放大器,提供较大的检波范围(60 dB),温度稳定性为±0.5 dB。ADL5330的增益控制引脚受AD8318的输出引脚控制。电压VOUT的范围为 0 V至接近VPSx。为避免过驱恢复问题,可以用阻性分压器按比例缩小AD8318的输出电压,以便与ADL5330的 0 V至 1.4 V增益控制范围接口。

利用一个 23 dB的耦合器/衰减器,可以让所需的VGA最大输出功率与AD8318线性工作范围的上限(900 MHz时约为−5dBm)相匹配。

检波器的误差放大器利用以地为参考的电容引脚 CLPF 对误差信号(电流形式)进行积分。必须将一个电容与 CLPF 相连,用来设置环路带宽,并确保环路稳定性。

图2显示针对900MHz正弦波和-1.5dBm输入功率,输出功率与VSET电压在整个温度范围的传递函数关系曲线。请注意,AD8318的功率控制为负向式。减小VSET相当于要求ADL5330提供更高的信号,因此一般会提高增益(GAIN)。

12.jpg

图2 ADL5330输出功率与AD8318设定点电压关系曲线,PIN=-1.5dBm

AGC环路能够控制接近ADL5330完整60dB增益控制范围的信号。在通常极为重要的最高功率范围内,其温度性能最精确。在输出功率的最高40dB范围内,整个温度范围的线性一致性误差在±0.5dB范围内。

对数放大器所带来的宽带噪声可忽略不计。

为使AGC环路保持均衡,AD8318必须跟踪ADL5330输出信号的包络,并向ADL5330的增益控制输入提供必要的电平。图3所示为图1中AGC环路的示波器屏幕截图。将采用50%。AM调制的1000MHz正弦波施加于ADL5330。ADL5330的输出信号为恒定的包络正弦波,其振幅与AD8318的设定点电压1.5V相对应。图中还显示了AD8318对不断变化的输入包络的增益控制响应。

电子管相关文章:电子管原理



上一页 1 2 下一页

关键词: 功率 控制 放大器

评论


相关推荐

技术专区

关闭