新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 微功耗数据采集系统的开发应用

微功耗数据采集系统的开发应用

作者:时间:2009-12-16来源:网络收藏

O 引言
以电池作为电源的水下,若要长时间工作必然要为其配备大量的电池作为电源,如果能降低,那么将减少电池的数量,不仅能降低的成本而且能大大缩小系统的体积和重量,也更有利于水下系统的布放。本文介绍了一种基于微MSP430F1611和的水下微系统的设计与实现,总功率仅150mW。相比传统的以DSP为处理器、IDE硬盘为存储介质的数据采集系统,功耗大大降低。

本文引用地址:http://www.eepw.com.cn/article/173516.htm


1 系统总体构成
本系统是在矢量水听器噪声测量试验中,要求实时采集并存储矢量水听器4通道信号,每通道采样率为10kHz,在水下不间断工作7小时。
鉴于本系统采样率不高,7个小时总的数据量不超过2个G,所以没必要采用功耗和体积都比较大的IDE硬盘,采用容量为2G的完全可以满足系统要求。的全称为Compact Flash,兼容3.3V和5V工作电压,工作时没有运动部件,其体积小、耗电量小、容量大,具有很高的性价比。目前,CF卡的容量可高达12GB,CF卡由控制芯片和闪存模块组成,闪存用于存储信息,控制芯片用于实现与主机的连接及数据的传输。CF卡可工作在TRUEIDE模式下,并且与普通IDE硬盘接口完全兼容,所以很容易进行使用。
系统对采集的数据只存储而不做信号处理,在处理器的选取上也就不必一味追求高速度,本系统采用TI公司的超低功耗MSP430F1611作为系统的处理器,负责AD的采集,并把采集的数据写入CF卡。这是一款高性价比的,具有以下特点:丰富的片内外设;超低功耗,在电压3.3V主频1MHz时工作电流仅600μA;强大的处理能力,在8MHz晶体驱动下,指令周期为125ns,完全满足系统的处理需求。系统总的结构图如图1所示。

2 硬件设计
2.1 CF卡接口设计
CF支持三种基本工作模式:PC Card Memory模式、PCcard I/O模式以及True IDE模式。在本文的设计中,使用True IDE模式,它可以在CF卡上电时自动进入。在插入CF卡之前,保证CF卡插槽的/OE管脚为低电平,即可以让CF卡进入True IDE模式。单片机与CF卡的接口电图如图2所示。

MSP430F1611拥有六个可独立配置的双向8位I/O端口(P1~P6)。本文的设计中将P1端口的P1.0、P1.1引脚分别与CF卡的读写信号线IORD、IOWR相连;复位信号RESET由P1.2给出;A0~A2为数据、命令或状态寄存器地址线,由单片机P1.3~P1.5管脚控制。CF卡总共有16根数据线D[15:0],但可以通过软件设定其工作在16 bit模式还是8 bit模式,由于MSP430F161l单片机数据线宽为8位,硬件中设计其工作在8 bit模式,使用D0~D7为数据线,与单片机的P2端口相连,D8~D15悬空。
2.2 AD采集模块设计
为了降低系统功耗,在我们系统指标要求的前提下,ADC器件的选取尽量选用低功耗ADC器件。设计中我们采用了美国ADI公司的AD7655,这款ADC采样率在10kSPS时功耗仅2.6mW,有四个模拟输入通道,精度为16bit,最高采样率高达1MSPS。数据输出接口支持串行和并行两种方式,可以方便地与单片机、DSP等处理器实现无缝连接。具体的AD与单片机的硬件接口图如图3所示。

AD7655每次对两路信号进行采样,当A0为低电平时对INAl和INBl两个通道的信号采样,当为高电平时对INA2和INB2两个通道的信号采样。CNVST为AD7655的转换开始信号,这个信号由主控单片机按照设计的采样率定周期地给出。在转换期问BUSY信号一直为高电平,转换结束后BUSY信号变为低电平,利用这个下降沿可以作为读取AD采样数据的中断信号,单片机在收到这个中断信号后给出片选CS、读信号READ和通道选择信号A/B读取AD数据。

电机保护器相关文章:电机保护器原理

上一页 1 2 下一页

评论


相关推荐

技术专区

关闭