新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 基于汇编语言的BCH解码校验算法

基于汇编语言的BCH解码校验算法

作者:时间:2011-05-12来源:网络收藏

在信号传输中,码以其独特的优点被广泛应用于微机级的通信中,但因其复杂,通常只用在动态实时的无线通信中,而对更底层的单片机级的信号传输纠错,往往只采用奇偶等简单的方法。本文结合一些测控系统和监控系统的开发,摸索出了在实时动态单片机中的检纠方法,并通过加以实现,取得了一定的效果。下面以(15,7)码为例进行探讨。

本文引用地址:http://www.eepw.com.cn/article/172794.htm

  1 BCH码在单片机中的放置结构

  BCH码作为一种检纠能力较强的循环码,由信息多项式i(x)和监督多项式j(x)组成。这里以c(x)表示整个BCH(15,7)码的15位码组多项式,则有:

  码组多项式

  在单片机中其放置的具体结构如下:

  具体结构

  其中,7位信息位放入寄存器R3中,8位监督位放入寄存器R4中。

  2 BCH原理

  二元BCH(15,7)码的校验原理是在时域上直接利用码的代数结构进行解码。首先,由于BCH(15,7)码的纠错能力t=2,所以根据接收序列计算伴随式sk=r(αk),其在伽罗华域GF(24)上的规定连续根为α、α2、α3、α4。与其对应的伴随式分别为: s1=r(α),s2=r(α2),s3=r(α3),s4=r(α4)。

  然后,由伴随式计算差错定位多项式[1]的系数。在二元BCH码中,对于任何值都有s2k=s2k;同理可推,s4=s24=s41,s6=s23 等。所以在求差错定位多项式的系数时,仅须用到奇数下标的伴随式值。就BCH(15,7)码而言,根据s1和s3这两个伴随式值便可计算出差错定位多项式的2个系数: σ1=s1和σ2=s3+s31 s1。

  最后,依据Chien氏搜索对码的每个位置逐位检索,以确定其错误位置。若s1=s3=0,则可判定无差错发生;若s31+s3=0,则有1个差错发生,错码位置就是s1;若有2个或2个以上的差错发生,则可按σ1αi+σ2α2i=1(i=0,1,2,…,14)进行搜索。若在搜索中找到的根少于2个,则说明该多项式有的根在定位域之外,这表明发生的差错已超过2个;若找到的根恰好等于2个,则表示刚好有2个差错发生,可根据差错位置予以纠正。经差错定位找到差错位置后,便可进行纠错了。纠错的原理相对来说比较简单,因为单片机处理的是二进制数,而二进制数只有2个状态,即不是“0”就是 “1”,因此纠错只须将对应差错位取反。

  3 BCH解码校验实现

  具体的解码程序采用单片机的实现,包括1个主程序和6个子程序。主程序的工作流程是整个程序的主线,决定着解码的效率;而子程序则是为了提高主程序在伽罗华域上代数运算的效率,优化主程序的程序结构。主程序的清单如下:

  MOV03H,R3

  MOV04H,R4

  MOVR1,#60H;错误位置初始地址

  MOVR7,#00H;出错个数初始值

  MOVR0,#00H;Chien氏搜索的初始值

  LCALLS1;调用s1=r(α)子程序

  MOVA,71H

  CJNEA,#00H,L1;s1≠0

  LCALLS3;调用s3=r(α3)子程序

  MOVA,70H

  CJNEA,#00H,L1;s3≠0

  LJMPRIGHT;送至解码输出程序

  L1:MOVA,71H

  MOV78H,A;s1的矢量值

  LCALLTAB2;s1的指数

  MOVB,A

  RLA

  ADDA,B;得到s31的指数

  LCALL DIV15;调用模15求余子程序

  LCALL TAB1;s31的矢量值


上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭