关 闭

新闻中心

EEPW首页 > 工控自动化 > 设计应用 > 基于TMS320F28334的伺服系统模块设计

基于TMS320F28334的伺服系统模块设计

作者:时间:2009-03-13来源:网络收藏
1 引言
随着工业、民用、军事对自动化的需求不断提高,以高性能微处理器为控制策略的数字化交流必将成为的发展趋势。围绕TI公司推出的高性能数字信号控制器,重点介绍其在中的功能及实际应用。

2 器件介绍
2.1 简介
(以下简称F28334)属于F2833x系列,该系列也是TMS320C一2000系列数字信号控制器中的一员。和以前相比,该系列器件有很多性能的提升和扩展。F2833x在继承同类器件32位定点处理器结构的基础上,集成有单指令(32位)IEEE754浮点处理单元。该器件可以执行效率很高的C/C++程序代码,可利用高级语言编写的软件完成系统控制,还可用C/C++语言开发程序算法。由于F2833x系列具有定点和浮点处理单元两种结构,因此能替代一些系统的数字信号处理器和控制器,这样不但能降低开发成本,还能降低功耗。而其具有的32x32位MAC、快速中断响应、8级指令流水线能够很轻松地完成复杂算法和控制,满足系统应用需要。
F28334的主要特性:150 MHz时钟周期:6个通道DMA控制器;16位或32位外部接口;128 Kxl6位Flash,34 K×16位SARAM,1 K×16位一次编程RAM;8 Kxl6位引导ROM;超强的外围控制,如EPWM,HRPWM,ECAP,EQEPI等;3个32位CPU定时器;外围串口有:ECAN,SCI,SPI,MCBSP,I2C;16个通道的12位M/D;多种低功耗模式和多种封装选择等。
2.2 A/D简介
A/D集成在F28334内部,属于其内部结构的一部分,与内部其他结构共用系统时钟,并由CPU控制。A/D转换器有16个模拟输入通道,可配置为2个独立的8通道模式,也可将2个独立的8通道配置成1个16通道模式,为EPWM提供更好服务,实现伺服系统的精确控制。
M/D转换器的主要特性:12位精度A/D转换器内核,并且具有双路采样保持电路;同时采样和序列采样模式;模拟输入电压范围:O~3 V;在12.5 MHz的A/D转换器时钟下,具有6.25MS/s的采样速率;16个结果寄存器存储相应通道的采样结果;在“开始转换序列”模式中具有多种触发源:软件立即开始、EPWM、XINT2。
以上特性及可变的采样速率、低功耗模式、A/D转换器与DMA接口等功能都是通过配置相应的寄存器实现的。正是A/D转换器的强大性能,可同时采集多达16路模拟信号,能够组成一个采样网络,从而全面检测和控制伺服系统。

本文引用地址:http://www.eepw.com.cn/article/163911.htm

3 系统硬件
对于伺服系统,相电流采样精度直接影响整个伺服系统的性能。因此采样电路和保护电路都是围绕电流环内的电流值。F28334处理和比较采样得到的电流,进而输出PWM波进行相应控制。系统框图如图l所示。

从图1可看出,电流测量信号通过A/D转换器INA0和ECAPI进入F28334;电流保护信号通过ECAP2和ECAP3进入F28334;而PWM控制波从F28334的专用引脚输出,经光电隔离和功率驱动电路后进入电机。由于系统的变频器采用交一直一交结构,即有一个三相不可控整流桥和用IGBT实现逆变功能的逆变器组成,所以只需产生6路PWM控制信号。
3.1 电流环内电流值的采样
为了提高采样精度,电流信号不能直接连接到A/D转换器的模拟输入引脚,而是要分别获取电压信号的幅值和方向。通过一个绝对值电路和电压跟随电路,得到一个正相电压,由运算放大器完成,最终得到的电压再连接到F28334的ADCINTO引脚;另外,通过一个由比较器构成的过零比较电路,检测出电压的正负,再连接到F28334的ECAPl引脚。电流采样电路框图如图2所示。

图2中的绝对值电路由放大器和二极管组成。电压跟随器的输出端用一只3.3 V的稳压二极管把输出电压箝位于0~3.3 V,过零比较器的输出端同样用一只3.3 V的稳压二极管箝位,保证F28334不会因输入电压值过高而损坏。
3.2 电流环内电流保护
系统电路中电机电流保护分为限流保护和过流保护。前者是当电机电流超过额定值In的x倍时开始动作,当电机电流减小到低于x倍额定电流时,保护系统退出,此信号通过E―CAP2进入F28334;后者则是当电机电流超过y倍(y>x)的额定电流时,电机停机,直到重新启动系统。此信号通过ECAP2进入F28334。电流保护电路框图如图3所示。

当比较器1负端电平大于参考电压(对应电机电流xIn)时,比较器1输出低电平,即限流保护ECAP2信号有效,由F28334封锁PWM引脚输出脉冲:当比较器2的负端电平大于参考电压(对应电机电流yIn),比较器2输出低电平,D触发器的Q置低,即ECAP3信号有效,进而F28334封锁PWM输出脉冲。注意:当过流保护后,电机电流即使减小到0,系统也不再工作,直到手动重启系统,并将D触发器的Q电平拉高,系统才会重新工作。其中,In为电机额定工作电流。x介于1和1.2之间,y为1.5。
3.3 三相PWM波产生
F28334的PWM脉冲信号的产生需要时基、比较计数器、动作限定器、死区、PWM斩波器以及跳闸区(Trip―Zone)。通过时基单元设定PWM波时基计数器的周期和频率,配置各路PWM波之间的相位关系,设定PWM波的对称性,输出时基计数器的值到比较寄存器和动作限定器。计数器的值连续与计数器A和计数器B相比较,相等时产生相应的输出到动作限定器。当时基计数器的值与时基的周期、零、计数器A以及计数器B之中的一个或多个相等时,输出PWM波。动作限定器输出的PWM波形经死区、PWM斩波器以及跳闸区,最后到达相应的引脚。如果不经死区和PWM斩波器则输出的波形不能被修改。跳闸区确保PWM波形的正确性。
3.4 功率驱动
系统是由一个三相不可控的整流桥和由IGBT实现逆变的逆变桥组成,功率驱动电路只是IGBT的栅极驱动电路,而其是否合理,决定其静态特性和动态特性。栅极正偏压、负偏压和栅极电阻对IGBT的通态压降、开关时间、开关损耗、承受短路能力以及dUGE/dt等参数都有影响。选用HL402B作为IGBT的驱动器,图4为HIA02B接线图。其中HIA02B接25 V电源,产生正偏电压为+15 V,负偏电压为一10 V,栅极电阻可选几欧姆到几百欧姆,这里选用2Ω的电阻。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭