新闻中心

EEPW首页 > 手机与无线通信 > 设计应用 > 射频识别(RFID)技术研究现状及发展展望

射频识别(RFID)技术研究现状及发展展望

作者:时间:2009-07-13来源:网络收藏

1.引言

本文引用地址:http://www.eepw.com.cn/article/157992.htm

(Radio Frequency Identification,),又称电子标签(E-Tag),是一种利用信号自动目标对象并获取相关信息的 最早的应用可追溯到第二次世界大战中用于区分联军和纳粹飞机的“敌我辨识”系统。随着的进步, 应用领域日益扩大,现已涉及到人们日常生活的各个方面,并将成为未来信息社会建设的一项基础。RFID 典型应用包括:在物流领域用于仓库管理、生产线自动化、日用品销售;在交通运输领域用于集装箱与包裹管理、高速公路收费与停车收费;在农牧渔业用于羊群、鱼类、水果等的管理以及宠物、野生动物跟踪;在医疗行业用于药品生产、病人看护、医疗垃圾跟踪;在制造业用于零部件与库存的可视化管理;RFID 还可以应用于图书与文档管理、门禁管理、定位与物体跟踪、环境感知和支票防伪等多种应用领域。

目前,RFID 已成为IT 业界的热点,被视为IT 业的下一个“金矿”。各大软硬件厂商,包括IBM、Motorola、Philips、TI、Microsoft、Oracle、Sun、BEA、SAP 等在内的各家企业都对RFID 技术及其应用表现出了浓厚的兴趣,相继投入大量研发经费,推出了各自的软件或硬件产品及系统应用解决方案。在应用领域,以Wal-Mart、UPS、Gillette 等为代表的大批企业已经开始准备采用RFID 技术对业务系统进行改造,以提高企业的工作效率并为客户提供各种增值服务。在标签领域,RFID 标签与条码相比,具有读取速度快、存储空间大、工作距离远、穿透性强、外形多样、工作环境适应性强和可重复使用等多种优势。

因此,分析RFID技术,并其未来无疑将非常重要。

2.

当前RFID 的主要围绕RFID 技术标准、RFID 标签成本、RFID 技术和RFID 应用

系统等多个方面展开。

2.1 RFID 技术标准

RFID 的标准化是当前亟需解决的重要问题,各国及相关国际组织都在积极推进RFID 技术标准的制定。目前,还未形成完善的关于RFID 的国际和国内标准。RFID 的标准化涉及标识编码规范、操作协议及应用系统接口规范等多个部分。其中标识编码规范包括标识长度、编码方法等;操作协议包括空中接口、命令集合、操作流程等规范。当前主要的RFID 相关规范有欧美的EPC 规范、日本的UID(Ubiquitous ID)规范和ISO 18000系列标准。其中ISO 标准主要定义标签和阅读器之间互操作的空中接口。

EPC 规范由Auto-ID 中心及后来成立的EPCglobal 负责制定。Auto-ID 中心于1999年由美国麻省理工大学(MIT)发起成立,其目标是创建全球“实物互联”网(internet ofthings),该中心得到了美国政府和企业界的广泛支持。2003 年10 月26 日,成立了新的EPCglobal 组织接替以前Auto-ID 中心的工作,管理和EPC 规范。关于标签,EPC 规范已经颁布第一代规范。

UID(Ubiquitous ID)规范由日本泛在ID 中心负责制定。日本泛在ID 中心由T-Engine论坛发起成立,其目标是建立和推广物品自动技术并最终构建一个无处不在的计算环境。该规范对频段没有强制要求,标签和读写器都是多频段设备,能同时支持13.56MHz 或2.45GHz 频段。UID 标签泛指所有包含ucode 码的设备,如条码、RFID 标签、智能卡和主动芯片等,并定义了9 种不同类别的标签。

2.2 RFID 技术研究

当前,RFID 技术研究主要集中在工作频率选择、天线设计、防冲突技术和安全与隐私

保护等方面。

2.2.1工作频率选择

工作频率选择是RFID 技术中的一个关键问题。工作频率的选择既要适应各种不同应用需求,还需要考虑各国对无线电频段使用和发射功率的规定。当前RFID 工作频率跨越多个频段,不同频段具有各自优缺点,它既影响标签的性能和尺寸大小,还影响标签与读写器的价格。此外,无线电发射功率的差别影响读写器作用距离。

低频频段能量相对较低,数据传输率较小,无线覆盖范围受限。为扩大无线覆盖范围,必须扩大标签天线尺寸。尽管低频无线覆盖范围比高频无线覆盖范围小,但天线的方向性不强,具有相对较强的绕开障碍物能力。低频频段可采用1 至2 个天线,以实现无线作用范围的全区域覆盖。此外,低频段电子标签的成本相对较低,且具有卡状、环状、钮扣状等多种形状。高频频段能量相对较高,适于长距离应用。低频功率损耗与传播距离的立方成正比,

而高频功率损耗与传播距离的平方成正比。由于高频以波束的方式传播,故可用于智能标签定位。其缺点是容易被障碍物所阻挡,易受反射和人体扰动等因素影响,不易实现无线作用范围的全区域覆盖。高频频段数据传输率相对较高,且通讯质量较好。表1为RFID 频段特性表。


表1RFID 频段特性

频段

描述

作用距离

穿透能力

125~134KHz

低频(LF)

45cm

能穿透大部分物体

13.553~13.567MHz

高频(HF)

1~3m

勉强能穿透金属和液体

400~1000MHz

超高频(UHF)

3~9m

穿透能力较弱

2.45GHz

微波(Microwave)

3m

穿透能力最弱

2.2.2 RFID 天线研究

天线是一种以电磁波形式把无线电收发机的信号功率接收或辐射出去的装置。天线按工作频段可分为短波天线、超短波天线、微波天线等;按方向性可分为全向天线、定向天线等;按外形可分为线状天线、面状天线等。

受应用场合的限制,RFID 标签通常需要贴不同类型、不同形状的物体表面,甚至需要嵌入到物体内部。RFID 标签在要求低成本的同时,还要求有高的可靠性。此外,标签天线和读写器天线还分别承担接收能量和发射能量的作用,这些因素对天线的设计提出了严格要求。当前对RFID 天线的研究主要集中在研究天线结构和环境因素对天线性能的影响上。

天线结构决定了天线方向图、极化方向、阻抗特性、驻波比、天线增益和工作频段等特性。方向性天线由于具有较少回波损耗,比较适合电子标签应用;由于RFID 标签放置方向不可控,读写器天线必须采取圆极化方式(其天线增益较大);天线增益和阻抗特性会对RFID 系统的作用距离产生较大影响;天线的工作频段对天线尺寸以及辐射损耗有较大影响。

天线特性受所标识物体的形状及物理特性影响。如金属物体对电磁信号有衰减作用,金属表面对信号有反射作用,弹性基层会造成标签及天线变形,物体尺寸对天线大小有一定限制等。人们根据天线的以上特性提出了多种解决方案,如采用曲折型天线解决尺寸限制,采用倒F 型天线解决金属表面的反射问题等。

射频卡相关文章:射频卡原理

上一页 1 2 下一页

评论


相关推荐

技术专区