新闻中心

EEPW首页 > 手机与无线通信 > 设计应用 > 一种超低功耗5.8GHz双模前置分频器设计

一种超低功耗5.8GHz双模前置分频器设计

作者:时间:2010-04-09来源:网络收藏

需要注意的是,当图4的锁存器工作在求值模式时(CLK为低电平),如果此时输入信号D由高电平向低电平变化,则输出Q的状态发生翻转,导致误操作。于是需要在锁存器的输入端加上一级时钟伪PMOS,如图5,以防止图4所示的锁存器工作在求值模式时输入端D电压发生由高到低的翻转,保证锁存器的输出在单个周期仅可以改变一次。图5即为本文采用的负边沿触发的动态D触发器,相比于图3所示的YuanSvensson D触发器,动态D触发器的晶体管数目减少了三个,增强了时钟的驱动能力,不仅提高了电路的工作频率,而且大大降低了。同时将“与 ”门集成到DFF中去,如图6所示。仿真结果表明这种集成“与”门的D触发器工作速度有一定提高,同时也降低了电路的。在同步2/3分频器中,DFFl采用的是不带“与”门的D触发器,DFF2采用带“与”门的触发器。
1.4 异步除2分频器
经过同步2/3分频器分频后,信号的频率已经降低。由于方波驱动较长分频链时,可能引起模块内部某点的高电平陷落,从而造成整个电路的逻辑混乱。由于同步分频器中D触发器的NQ端输出的高电平不稳定,可以通过在Q端添加缓冲器予以解决。仿真结果表明,用该触发器组成的异步链可在速度、频率和间达到很好的折衷。

本文引用地址:http://www.eepw.com.cn/article/157518.htm

2 电路的调试与仿真
调试时,首先要确定P1管与Nl管的宽长比(W/L)以保证时钟为高电平时,图4所示的锁存器N2管总保持在关断状态,电路处于保持模式,因而输出O点的电压保持不变。当时钟从高变为低时,锁存器进入求值模式,此时如果输入D为低电平,这时N2管和P2管都导通,要求P2管的上拉能力比N2的下拉能力弱,以保证Q点输出VOLQ比下一级门电路的输入电压VIL低,即输出在低电平范围内。
采用TSMC90nm CMOS工艺,电源电压1.2V,使用Mentor公司的Eldo软件对本进行仿真,仿真结果显示,输入频率为5.8GHzH寸,电路功耗仅为O.8mW。仿真波形如图8所示。

3 结论
对于一个分频器来说,工作的速度(输入信号的频率)和功耗是其性能最重要的两个参数,本文采用动态有比D触发器的结构,相比于传统的Yuan-SvenssonTSPC D触发器,MOS管的数目减少了3个,这个对于VLSI来说将大大提高了其集成度,因此有着更好的工作频率和更低的功耗。并在此基础上了一个分频器。完全覆盖了WLAN IEEE802.11a通信标准的所有频段。采用TSMC90nmCMOS工艺,电源电压1.2V,运用Mentor公司的Elod软件对本进行仿真,电路工作在5.8GHz时功耗仅为0.8mW。电路最高工作频率可达到6.25GHz。

分频器相关文章:分频器原理

上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭