新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > μC/OS-II在嵌入式开发平台上进行移植的一般方法和技巧

μC/OS-II在嵌入式开发平台上进行移植的一般方法和技巧

作者:时间:2012-08-24来源:网络收藏

引言

本文引用地址:http://www.eepw.com.cn/article/148548.htm

---实时操作系统的使用,能够简化系统的应用,有效地确保稳定性和可靠性,便于维护和二次

μ是一个基于抢占式的实时多任务内核,可固化、可剪裁、具有高稳定性和可靠性,除此以外,μ的鲜明特点就是源码公开,便于和维护。

在μ官方的主页上可以查找到一个比较全面的范例列表。但是,在实际的项目中,仍然没有针对项目所采用芯片或开发工具的合适版本。那么,不妨自己根据需要

本文则以在TMS320C6711 DSP上的移植过程为例,分析了μC/OS-II在开发移植的。μC/OS-II移植的基本步骤

在选定了系统和开发工具之后,μC/OS-II的移植工作,需要遵循以下的几个步骤:

● 深入了解所采用的系统核心

● 分析所采用的C语言开发工具的特点

● 编写移植代码

● 进行移植的测试

● 针对项目的开发,封装服务函数

(类似80x86版本的PC.C和PC.H)

系统核心

无论项目所采用的系统核心是MCU、DSP、MPU,进行μC/OS-II的移植时,所需要关注的细节都是相近的。

首先,是芯片的中断处理机制,如何开启、屏蔽中断,可否保存前一次中断状态等。还有,芯片是否有软中断或是陷阱指令,又是如何触发的。

此外,还需关注系统对于存储器的使用机制,诸如内存的地址空间,堆栈的增长方向,有无批量压栈的指令等。

在本例中,使用的是TMS320C6711 DSP。这是TI公司6000系列中的一款浮点型号,由于其时钟频率非常高,且采用了超常指令字(VLIW)结构、类RISC指令集、多级流水等技术,所以运算性能相当强大,在通信设备、图像处理、医疗仪器等方面都有着广泛的应用。

在C6711中,中断有3种类型,即复位、不可屏蔽中断(NMI)和可屏蔽中断(INT4-INT15)。可屏蔽中断由CSR寄存器控制全局使能,此外也可用IER寄存器分别置位使能。而在C6711中并没有软中断机制,所以μC/OS-II的任务切换需要编写一个专门的函数实现。

此外,C6711也没有专门的中断返回指令、批量压栈指令,所以相应的任务切换代码均需编程完成。由于采用了类RISC核心,C6711的内核结构中,只有A0-A15和B0-B15这两组32bit的通用寄存器。

C语言开发工具

无论所使用的系统核心是什么,C语言开发工具对于μC/OS-II是必不可少的。

最简单的信息可以从开发工具的手册中查找,比如:C语言各种数据类型分别编译为多少字节;是否支持汇编,格式要求怎样;是否支持“interrupt”非标准关键字声明的中断函数;是否支持汇编代码列表(liST)功能,等等。

上述的这样一些特性,会给嵌入式的开发带来很多便利。TI的C语言开发工具CCS for C6000就包含上述的所有功能。

而在此基础上,可以进一步地弄清开发工具的一些技术细节,以便进行之后真正的移植工作。

首先,开启C编译器的“汇编代码列表(list)”功能,这样编译器就会为每个C语言源文件生成其对应的汇编代码文件。

在CCS开发环境中的是:在菜单“/Project/Build optioNS”的“FeedBACK”栏中选择“Interlisting:Opt/C and ASM(-s)”;或者,也可以直接在CCS的C编译命令行中加上“-s”参数。

然后分别编写几个简单的函数进行编译,比较C源代码和编译生成的汇编代码。例如:

void FUNC_TEMP (void)

{

Func_tmp2(); //调用任一个函数

}

在CCS中编译后生成的ASM代码为:

.asg B15, SP // 宏定义

_FUNC_TEMP:

STW B3,*SP--(8) // 入栈

NOP 2

CALL _ Func_tmp2 //-----------

MVKL BACK, B3 // 函数调用

MVKH BACK, B3 //-----------

NOP 3

BACK: LDW *++SP(8),B3 // 出栈

NOP 4

RET B3 // 函数返回

NOP 5

由此可见,在CCS编译器的规则中,B15寄存器被用作堆栈指针,使用通用存取指令进行栈操作,而且堆栈指针必须以8字节为单位改变。

此外,B3寄存器被用来保存函数调用时的返回地址,在函数执行之前需要入栈保护,直到函数返回前再出栈。

当然,CCS的C编译器对于每个通用寄存器都有约定的用途,但对于μC/OS-II的移植来说,了解以上信息就足够了。

最后,再编写一个用“interrupt”关键字声明的函数:

interrupt void ISR_TEMP (void)

{

int a;

a=0;

}

生成的ASM代码为:

_ISR_TEMP:

STW B4,*SP--(8) // 入栈

NOP 2

ZERO B4 //---------

STW B4,*+SP(4) // a=0

NOP 2 //----------

B IRP // 中断返回

LDW *++SP(8),B4 // 出栈

NOP 4

与前一段代码相比,对于中断函数的编译,有两点不同:

● 函数的返回地址不再使用B3寄存器,相应地也无需将B3入栈。(IRP寄存器能自动保存中断发生时的程序地址)

● 编译器会自动统计中断函数所用到的寄存器,从而在中断一开始将他们全部入栈保护——例如上述程序段中,只用到了B4寄存器。

编写移植代码

在深入了解了系统核心与开发工具的基础上,真正编写移植代码的工作就相对比较简单了。

μC/OS-II自身的代码绝大部分都是用ANSI C编写的,而且代码的层次结构十分干净,与平台相关的移植代码仅仅存在于OS_CPU_A.ASM、OS_CPU_C.C以及OS_CPU.H这三个文件当中。

在移植的时候,结合前面两个步骤中已经掌握的信息,基本上按照《嵌入式实时操作系统μC/OS-II》一书的相关章节的指导来做就可以了。

但是,由于系统核心、开发工具的千差万别,在实际项目中,都会有一些处理上的不同,需要特别注意。以C6711的移植为例:

● 中断的开启和屏蔽的两个宏定义为:

#define OS_ENTER_CRITICAL() Disable_int()

#define OS_EXIT_CRITICAL() Enable_int()

linux操作系统文章专题:linux操作系统详解(linux不再难懂)

上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭