新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 嵌入式系统e_slab的研究与实现

嵌入式系统e_slab的研究与实现

作者:时间:2012-12-27来源:网络收藏

随着硬件技术的发展和内存容量的扩大,操作中内存管理技术日趋完善。但是在领域中,硬件性能和内存容量远远落后于PC机,其内存管理受到多种因素制约,若直接采用操作中的内存管理技术,不仅难以达到预期效果,而且会影响的性能。

本文引用地址:http://www.eepw.com.cn/article/148166.htm

系统内存管理设计过程中,发现操作系统中的slab分配器虽然在PC机上有良好的性能,但是在嵌入式系统中不但不能发挥其优势,还降低了系统的整体性能。本文通过分析,指出了slab分配器的不足,并给出相应的解决方案。实验结果表明,slab分配器经过改进可适用于嵌入式系统。

1 slab分配器分析

操作系统内核运行时会频繁地为某些对象分配内存空间,而这些对象往往只需要几十或几百KB的空间,如果直接采用页面管理器进行内存分配,将产生很多内存碎片,造成严重的内存浪费。slab分配器支持细粒度的内存分配,较好地解决了此问题。由于性能优越,slab被Linux、FreeBSD等操作系统采用,是目前应用最广的内核内存管理器之一[1]。

1.1 slab分配器设计思想

基于页面分配器[2],将一页或几页的内存组织起来,划分成一定数量的小块内存,这种连续的页面称之为slab。它为内核中使用频繁的对象建立专门的缓冲区(cache),每种类型的对象都有自己专用的cache[2]。一个cache管理着多个slab,每个slab又管理着多个对象。slab的大小与所管理对象的大小有关。根据slab管理对象的分配情况,可将每个cache中的slab分为3类[3-4]:(1)slab管理的对象已经完全分配,没有空闲的对象;(2)slab管理的对象部分分配,还有部分空闲对象;(3)slab中的对象都未分配,都是空闲对象。

不同的slab分别放入不同的队列中,即每个cache管理3个slab队列,cache与cache之间的关系如图1虚框①内所示,cache与slab的关系如图1虚框②内所示。

当slab分配器接收到内存申请时,根据所申请内存的大小找到合适的cache,从cache管理的第二类slab中分配对象,若失败则从第三类slab中分配对象,若还不成功则说明cache中没有空闲对象,须为cache创建一个新的slab,从新的slab中分配空闲对象。

对象释放过程中,不仅要清空对象占用的空间,而且还要调整对象所属slab的状态,判断是否改变此slab在cache中的位置。

slab分配器采用着色机制将不同slab中的对象放入不同的偏移处,利用硬件高速缓存的映射机制,将页的不同偏移映射到硬件缓存的不同地址。而每个slab的开始部分访问频率最高,只要slab中起始对象的偏移不同则映射到硬件高速缓存的位置就不同,从而降低了频繁换入换出的性能损失[4-5]。

1.2 slab分配器在嵌入式系统中的缺陷

slab分配器虽然能解决系统对小块内存的频繁需求,但是管理结构复杂,内存分配策略开销较大。在内存受限的嵌入式系统中,slab的缺陷大大影响了系统的整体性能。总之,slab分配器存在以下三方面的缺陷:

(1)slab管理结构和存储开销较大

每个slab由slab描述结构、管理空闲对象的整型数组和对象三部分组成,整型数组把slab中空闲对象组成一个顺序队列,数组大小与对象数有关,每个对象对应一个整数,如图2所示。当对象较小时,整型数组将造成较大的内存开销。

(2)cache结构复杂而且数量较多

系统中存在着专用对象和通用对象。专用对象专门存储特定用途的数据结构,例如CPU、文件系统等,其数量与系统密切相关;通用对象用来存储一般的数据结构,大小在几十KB到几千KB之间(一般为2的整次幂字节),有十多种。不管是专用对象还是通用对象,slab分配器都为其建立了一个cache结构,众多cache组织和管理的较大开销是嵌入式系统难以承受的。

(3)复杂的队列管理

如图1所示,slab分配器中存在较多的队列,每个cache管理着3个slab队列,每个slab队列与cache组成循环队列。所有的cache组成双向循环队列。面对众多的队列,如何有效地管理是很困难的。

1.3 slab在嵌入式系统中的改进

针对上节中slab分配器的三点缺陷,给出相应的改进方案。

(1)改进slab结构

针对slab中对象管理数组开销过大的问题,可以将多个不同的slab合并成一个slab,从而减少slab的数量,即一个slab管理对象的大小可在一个小范围内浮动。由于slab中对象大小不同,无法确定slab中对象的大小、数量和位置,所以必须重新设置slab结构。

(2)限制slab分配器管理的内存粒度范围

由于内核内存管理器主要负责细粒度的内存管理,所以限制所管理对象的大小。对于大块内存的申请,直接由页面分配器处理。

(3)精简队列管理

简化cache中繁杂的队列,将cache中的前两个slab队列合并成一个队列。

本文将经过上述三方面改进的分配器称之为分配器。

2 分配器设计

2.1 基本管理结构

分配器有3个重要的基本结构,下面分别对其作相关介绍。

(1)object_t结构

typedef struct object {

unsigned long size;

unsigned long offset;

} object_t;

object_t是描述对象的基本结构,每个对象对应一个object_t结构,它描述了对象的大小和下一个空闲对象的地址。

(2)e_slab_t结构

typedef struct e_slab _s {

struct list_head list;

void *s_mem;

unsigned int units;

unsigned int free;

} e_slab _t;

e_slab _t是管理对象的基本结构,它不仅描述了本结构的页块起始地址,而且存储了空闲对象的数量和地址等信息。

object_t、e_slab _t和对象结构如图3虚框②内所示。

(3)cache结构

typedef struct cache_s {

struct list_head next;

struct list_head slab_list;

linux操作系统文章专题:linux操作系统详解(linux不再难懂)
红外热像仪相关文章:红外热像仪原理

上一页 1 2 下一页

评论


相关推荐

技术专区

关闭