REF-DAB11KIZSICSYS是一个CLLC谐振DC/DC转换器板,能够提供高达11kW的800 V输出电压,IMZ120R030M1H(30mΩ/1200V SiC MOSFET)加上1EDC20I12AH,使其性价比和功率密度更高。凭借其高效的双向功率变换能力和软开关特性,是电动汽车和能量存储系统(ESS)等DCDC项目的理想选择。 终端应用产品30 kW 至 150 kW 的充电机,50 kW 至 350 kW 的充电机,储能系统,电动汽车快速充电,功率转换系统 (PCS)►场景应用
关键字:
mosfet dc-dc 英飞凌 ipcdcdc infineon 终端 功率 dc 充电器
智能化便携式电子设备诸如智能手机、笔记本电脑、平板电脑等的不断更新换代,功能越来越丰富,随之带来了耗电量急剧上升的挑战。然而,在现有电池能量密度还未取得突破性进展的背景下,人们开始探索更快的电量补给,以高效充电来压缩充电时间,降低充电的时间成本,从而换取设备的便携性,提升用户体验。目前,USB-PD是最为主流的快充技术。该技术标准具有18W、20W、35W、65W和140W等多种功率规格,以及5V、9V、12V和20V等多种电压输出。灵活的电压电流输出配置让各种电子设备都能通过一条USB-TYPE C线缆
关键字:
上海贝岭 驱动IC MOSFET
SiC MOSFET具有出色的开关特性,但由于其开关过程中电压和电流变化非常大,因此如Tech Web基础知识 SiC功率元器件“SiC MOSFET:桥式结构中栅极-源极间电压的动作-前言”中介绍的需要准确测量栅极和源极之间产生的浪涌。在这里,将为大家介绍在测量栅极和源极之间的电压时需要注意的事项。我们将以SiC MOSFET为例进行讲解,其实所讲解的内容也适用于一般的MOSFET和IGBT等各种功率元器件,尽情参考。本文的关键要点・如果将延长电缆与DUT引脚焊接并连接电压探头进行测量,在开关速度较快时
关键字:
罗姆半导体,MOSFET
东芝电子元件及存储装置株式会社(“东芝”)今日宣布,推出新款功率器件---第三代碳化硅(SiC)MOSFET[1][2]“TWxxNxxxC系列”。该系列具有低导通电阻,可显著降低开关损耗。该系列10款产品包括5款1200V产品和5款650V产品,已于今日开始出货。 新产品的单位面积导通电阻(RDS(ON)A)下降了大约43%[3],从而使“漏源导通电阻×栅漏电荷(RDS(ON)×Qgd)”降低了大约80%[4],这是体现导通损耗与开关损耗间关系的重要指标。这样可以将开关损耗减少大约
关键字:
东芝 SiC MOSFET
基础半导体器件领域的高产能生产专家Nexperia今天宣布推出PMCB60XN和PMCB60XNE 30V N沟道小信号Trench MOSFET,该产品采用超紧凑晶圆级DSN1006封装,具有市场领先的RDS(on)特性,在空间受限和电池续航运行至关重要的情况下,可使电力更为持久。新型MOSFET非常适合智能手机、智能手表、助听器和耳机等高度小型化电子产品,迎合了更智能、功能更丰富的趋势,满足了增加系统功耗的需求。 RDS(on)与竞争器件相比性能提升了25%,可最大限度降低能耗,提高负载开关
关键字:
Nexperia 晶圆级 MOSFET
本文介绍最新的驱动器+ MOSFET (DrMOS)技术及其在稳压器模块(VRM)应用中的优势。单片DrMOS器件使电源系统能够大幅提高功率密度、效率和热性能,进而增强最终应用的整体性能。引言随着技术的进步,多核架构使微处理器在水平尺度上变得更密集、更快速。因此,这些器件需要的功率急剧增加。微处理器所需的这种电源由稳压器模块(VRM)提供。在该领域,推动稳压器发展的主要有两个参数。首先是稳压器的功率密度(单位体积的功率),为了在有限空间中满足系统的高功率要求,必须大幅提高功率密度。另一个参数是功率转换效率
关键字:
ADI MOSFET 电源系统设计
基础半导体器件领域的高产能生产专家Nexperia今天宣布推出采用超小DFN封装的新系列20 V和30 V MOSFET DFN0603。Nexperia早前已经提供采用该封装的ESD保护器件,如今更进一步,Nexperia成功地将该封装技术运用到MOSFET产品组合中,成为行业竞争的领跑者。该系列小型MOSFET包括: 新一代可穿戴设备和可听戴设备正在融入新的人工智能(AI)和机器学习(ML)技术,这为产品设计带来了若干挑战。首先,随着功能的增加,可供使用的电路板空间变得十分宝贵,另外,随着
关键字:
Nexperia MOSFET
随着时代的进步,传统的人工近距离控制、检测和采样的方式,已经无法满足时代的需求,而物联网已经成为未来发展的趋势,智能化、自动化在未来将为管理和生活带来更多的便利性.在物联网IoT盛行的当前,无线通信技术将起着关键的作用,它将可以解决远程控制、远程监测和采集的问题.其中 ZigBee 技术将承担不可替代的角色,其应用前景令人关注.应运市场发展需求一款基于NXP K32W061 ZigBee Super Dongle 方案应运而生。该方案采用超低功耗高性能 Arm®Cortex®-M4 无线微控制器,片上 F
关键字:
NXP K32W061 ZigBee Super Dongle
电源管理系统要实现高能源转换效率、完善可靠的故障保护,离不开高性能的开关器件。近日,豪威集团全新推出两款MOSFET:业内最低内阻双N沟道MOSFET WNMD2196A和SGT 80V N沟道MOSFET WNM6008。 WNMD2196A 超低Rss(ON),专为手机锂电池保护设计近几年,手机快充技术飞速发展,峰值充电功率屡创新高。在极大地缓解消费者电量焦虑的同时,高功率充电下的安全问题不容小觑。MOSFET在电池包装中起到安全保护开关的作用,其本身对功率的损耗也必须足够低才能
关键字:
豪威集团 MOSFET
米勒电容引起的寄生导通常被认为是碳化硅MOSFET的弱点。为了避免这种效应,硬开关逆变器通常采用负栅极电压关断。但是,这对于CoolSiC™MOSFET真的是必要的吗?引言选择适当的栅极电压是设计所有栅极驱动电路的关键。凭借英飞凌的CoolSiC™MOSFET技术,设计人员能够选择介于18V和15V之间的栅极开通电压,从而使器件具有极佳的载流能力或者可靠的短路耐用性。另一方面,栅极关断电压仅需确保器件保持安全关断即可。英飞凌鼓励设计人员在0V下关断分立式MOSFET,从而简化栅极驱动电路。为此,本文介绍了
关键字:
英飞凌 MOSFET
过去几年,实际应用条件下的阈值电压漂移(VGS(th))一直是SiC的关注重点。英飞凌率先发现了动态工作引起的长期应力下VGS(th)的漂移现象,并提出了工作栅极电压区域的建议,旨在最大限度地减少使用寿命内的漂移。[1]。引言过去几年,实际应用条件下的阈值电压漂移(VGS(th))一直是SiC的关注重点。英飞凌率先发现了动态工作引起的长期应力下VGS(th)的漂移现象,并提出了工作栅极电压区域的建议,旨在最大限度地减少使用寿命内的漂移。[1]。经过不断研究和持续优化,现在,全新推出的CoolSiC™ MO
关键字:
英飞凌 MOSFET
随着制备技术的进步,在需求的不断拉动下,碳化硅(SiC)器件与模块的成本逐年降低。相关产品的研发与应用也得到了极大的加速。尤其在新能源汽车,可再生能源及储能等应用领域的发展,更是不容小觑。富昌电子(Future Electronics)一直致力于以专业的技术服务,为客户打造个性化的解决方案,并缩短产品设计周期。在第三代半导体的实际应用领域,富昌电子结合自身的技术积累和项目经验,落笔于SiC相关设计的系列文章。希望以此给到大家一定的设计参考,并期待与您进一步的交流。作为系列文章的第一部分,本文将先就SiC
关键字:
富昌电子 SiC MOSFET
东芝电子元件及存储装置株式会社(“东芝”)今日宣布,在其TCK42xG系列MOSFET栅极驱动IC产品中新增五款适用于可穿戴设备等移动电子设备的产品。该系列的新产品配备了过电压锁定功能,能根据输入电压控制外部MOSFET的栅极电压。
关键字:
MOSFET 栅极驱动
导读】事物皆有两面:SiC MOSFET以更快的开关速度,相比IGBT可明显降低器件开关损耗,提升系统效率和功率密度;但是高速的开关切换,也产生了更大的dv/dt和di/dt,对一些电机控制领域的电机绝缘和EMI设计都带来了额外的挑战。应用痛点氢燃料系统中的高速空压机控制器功率35kW上下,转速高达10万转以上,输出频率可达2000Hz,调制频率50kHz以上是常见的设计,SiC MOSFET是很好的解决方案。但是,SiC的高dv/dt和谐波会造成空压机线包发热和电机轴电流。一般的对策有二:1.采用大的栅
关键字:
英飞凌 MOSFET 2L-SRC
_____开关特性是功率半导体开关器件最重要的特性之一,由器件在开关过程中的驱动电压、端电压、端电流表示。一般在进行器件评估时可以采用双脉冲测试,而在电路设计时直接测量在运行中的变换器上的器件波形,为了得到正确的结论,获得精准的开关过程波形至关重要。SiC MOSFET相较于 Si MOS 和 IGBT 能够显著提高变换器的效率和功率密度,同时还能够降低系统成本,受到广大电源工程师的青睐,越来越多的功率变换器采用基于 SiC MOSFET 的方案。SiC MOSFET 与 Si 开关器件的一个重要区别是它
关键字:
Tektronix SiC MOSFET
super junction mosfet介绍
您好,目前还没有人创建词条super junction mosfet!
欢迎您创建该词条,阐述对super junction mosfet的理解,并与今后在此搜索super junction mosfet的朋友们分享。
创建词条
super junction mosfet相关帖子
super junction mosfet资料下载
super junction mosfet专栏文章
关于我们 -
广告服务 -
企业会员服务 -
网站地图 -
联系我们 -
征稿 -
友情链接 -
手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司
京ICP备12027778号-2 北京市公安局备案:1101082052 京公网安备11010802012473