- 本方案使用NCP1681 Totem pole PFC架构 + NCP13994 LLC架构 + NCP4306同步整流电源应用,次级采用NCL38046可以支持Analog 与PWM调整输出功率 ,辅助电源采用NCP1343-CCM/QR控制。NCP1681是一种创新的多模式操作控制IC,此IC载重载时操作在连续导通模式
(CCM),在轻载或中载时则应用在边界模式(CrM) 的功率因数校正控制器 IC,并且适合设计用于驱动无桥图腾柱拓扑(Totem pole
PFC)。 这种无桥图腾柱 PFC
- 关键字:
Analog PWM 智能工业电源 安森美 GaNFET
- 作者简介本文是第二届电力电子科普征文大赛的获奖作品,来自河北工业大学裴玉硕所的投稿在现代科技迅猛发展的今天,我们的生活变得越来越智能、节能和环保。而在这一切背后,有一种技术默默地发挥着重要作用——那就是脉宽调制(Pulse-width modulation,PWM)技术。虽然它可能不为大众所熟知,但PWM技术在电力电子领域的应用却深刻地影响了我们的日常生活。从家中的智能家电到高效的新能源系统,PWM技术正不断改变我们的世界。让我们一起深入探秘这项技术,了解它如何在我们生活的各个角落发挥作用。脉宽调制技术概
- 关键字:
英飞凌 PWM
- 一、输出正弦波刚才测试了PWM转换模拟信号的功能。下面,将 STC32硬件运算库加入工程文件中,查看一下是否可以提高输出正弦波的速度。二、对比结果1、带有数学库首先,将STC32G的硬件数据库加入工程文件,此时,主循环中计算sine函数使用硬件加速,我们可以观察输出正弦波的波形以及频率。平稳下来,输出正弦波的频率为 180Hz. 这反应了当前计算sine 数值的循环速度。▲ 图1.2.1 使用数学库输出的正弦波形2、取消硬件库下面将 STC32G数学库去掉。重新进行编译,下载运行。令人感到惊讶的是,去掉数
- 关键字:
PWM 模拟信号
- 一、前言在刚才的实验中,使用 GP8500,将STC32G单片机发送的PWM波形转换成模拟信号。在这个过程中,会发现输出有一些毛刺。信号中的毛刺主要是因为输出PWM的波形出现了抖动。可以看到,在抖动前面和后面的PWM占空比不同。由此可以知道,在这中间,单片机对PWM的比较单元进行了数值更新。更新前后,GP8500输出的电压不同。那么问题来了,如何能够避免PWM中寄存器更新的过程中,出现输出脉冲抖动的情况呢?下面讨论一下这个问题的解决方案。▲ 图1.1.1 输出信号中的毛刺二、解决方案在 STC3
- 关键字:
STC32G PWM 模拟信号
- 一、前言很多单片机都不具备DAC输出,但会有多路PWM输出,下面测试利用PCA芯片,GP8500,将PWM信号转换成模拟电压信号。测试一下这个方案,以备之后应用积累经验。二、电路设计设计基于STC32G单片机的测试电路。选择 PWMB中的第四个通道,也就是PWM8 的信号发送给 GP8500,由它将 PWM信号转换成模拟电压。铺设单面PCB,适合一分钟制板方法制作测试电路板。一分钟之后得到测试电路板,焊接清洗之后 进行测试。现在电路板工作电源为 5V。三、测试结果下载STC32G程序的时候, 选择内部时钟
- 关键字:
DAC PWM PCA 模拟信号
- PWM有着非常广泛的应用,比如直流电机的无极调速,开关电源、逆变器等等,个人认为,要充分理解或掌握模拟电路、且有所突破,很有必要吃透这三个知识点:PWM电感纹波PWM是一种技术手段,PWM波是在这种技术手段控制下的脉冲波,如果你不理解是把握不住PWM波的!如下图所示,这种比喻很形象也很恰当,希望对学习的朋友有所帮助与启发。PWM全称Pulse Width Modulation:脉冲宽度调制(简称脉宽调制,通俗的讲就是调节脉冲的宽度),是电子电力应用中非常重要的一种控制技术,在理解TA之前我们先来了解几个概
- 关键字:
PWM 电机控制 电路设计
- 本期,为大家带来的是《采用峰值电流模式控制的功率因数校正》,我们将深入探讨控制 PFC 并实现单位功率因数的新方法 - 一种特殊的峰值电流模式。这种方法不需要电流采样电阻,因此消除了功率损耗。虽然它仍使用电流互感器来检测开关电流,但无需在 PWM 导通时间的中间进行采样,从而避免了采样位置偏移问题。除此以外还有其他好处。引言当处理 75W 以上的功率级别时,离线电源需要功率因数校正 (PFC)。PFC 的目标是控制输入电流以跟随输入电压,从而使负载看起来像是纯电阻器。对于正弦交流输入电压,输入电流也需为正
- 关键字:
PFC 峰值电流 PWM
- 传统的隔离型反激式转换器的架构中,转换器的功率等级通常可达60W左右,通过调整变压器的匝数比,借助原边开关和可以将电源电压转换为输出电压。有关输出电压的信息会通过反馈路径传输到原边的PWM发生器,以使该输出电压尽可能保持稳定。如果输出电压太高或太低,则将调整PWM发生器的占空比。图1. 传统的带有光耦合器反馈路径的反激式控制器。这种反馈路径会增加成本,占用电路板上的空间,并与变压器的隔离电压共同决定电路的最大隔离电压。光耦合器通常会老化,随着时间的推移其特性会改变,并且通常不适用于85°C以上的温度。除光
- 关键字:
转换器 电压转换 PWM
- 什么是PWMPWM(Pulse Width Modulation)简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在测量、通信、工控等方面。· PWM的频率是指在1秒钟内,信号从高电平到低电平再回到高电平的次数,也就是说一秒钟PWM有多少个周期,单位Hz。· PWM的周期T=1/f,T是周期,f是频率。如果频率为50Hz ,也就是说一个周期是20ms,那么一秒钟就有 50次PWM周期。· 占空比是一个脉冲周期内,高电平的时间与整个周期时间的比例,单位是% (0%-1
- 关键字:
PWM 电机 转速控制
- 今天给大家分享的是:构建脉宽调制信号发生器脉宽调制(PWM)是一种利用数字信号精确控制模拟设备的技术。脉宽调制信号由用于模拟变化的模拟电压的电子脉冲组成。脉宽调制信号通常用于控制伺服系统、LED和直流电机等模拟设备。一、脉宽调制的工作原理在脉冲宽度调制中,高频电脉冲序列被发送到设备为其供电,脉冲可由驱动晶体管或功率MOS管生成。脉冲宽度调制信号出现在晶体管产生的高电压和低电压的周期中,信号从低电平循环到高电平所需的时间称为周期持续时间。信号保持高电平的时间称为脉冲宽度:脉冲宽度脉冲宽度与周期持续时间的比率
- 关键字:
脉宽调制信号发生器 PWM 伺服电机 直流电机
- 在我们传统的LED灯中,一般调节光的亮度大多使用拔动开关等方式,在灯的生产过程中要手工一个一个地进行调节,比较浪费时间,而手工调试的结果,一致性很差。ST推出的ST25DV-PWM是经过NFC读写进行PWM控制调节LED灯的亮度,工厂生产既方便、省时而一致性俱佳,可大大提升生产效率,非常适合LED灯的应用。 这是一个基于NFC近场通信的技术应用,工作在13.56MHz频率,读写距离可以在10-30cm,依赖天线的大小和设计。在目前的各类产品,NFC得到广泛的应用,如我们家居的智能门锁、手机等,我们可以很方
- 关键字:
NFC ST25DV-PWM 照明控制
- PWM有着非常广泛的应用,比如直流电机的无极调速,开关电源、逆变器等等,个人认为,要充分理解或掌握模拟电路、且有所突破,很有必要吃透这三个知识点:PWM电感纹波PWM是一种技术手段,PWM波是在这种技术手段控制下的脉冲波,如果你不理解是把握不住PWM波的!如下图所示,这种比喻很形象也很恰当,希望对学习的朋友有所帮助与启发。PWM全称Pulse Width Modulation:脉冲宽度调制(简称脉宽调制,通俗的讲就是调节脉冲的宽度),是电子电力应用中非常重要的一种控制技术,在理解TA之前我们先来了解几个概
- 关键字:
PWM 模拟电路 电感
- 在本文中,我们使用LTspice来讨论电流模式控制(CMC)降压调节器中电压误差放大器和PWM发生器的操作。在前一篇文章中,我介绍了一种LTspice降压转换器,它使用电流模式控制(CMC)从10V输入产生5V调节输出。我已经复制了图1中的示意图。CMC降压转换器的LTspice示意图。 图1。峰值CMC降压转换器的LTspice示意图。该架构由四个子系统组成:功率级、电流感测电路、误差放大器和PWM发生器。我们在第一篇文章中介绍了功率级和电流感测电路;在本文中,我们将重点介绍误差放大器和PWM
- 关键字:
LTspice,CMC,PWM,降压变换器
- 本文提供了电流模式控制的入门知识,这是一种广泛使用的电压模式控制的替代方案,可以更快地响应输入电压和负载电流的变化。关于开关稳压器的介绍性文章有时会显示只描述功率级的图表,尽管如果你一直在阅读我关于开关稳压器技术和拓扑结构的文章,你就会知道这些电路需要功率级和控制器。虽然功率级是基于电感器的电压转换的关键,但基于反馈的开关控制是产生可预测、稳定输出的关键。在我的闭环控制入门中,我们检查并模拟了一个电压控制电路。这一次,我们将讨论一种不同的控制方案:电流模式控制,也称为CMC。电压模式控制在我们进入主题之前
- 关键字:
开关稳压器,CMC,PWM
- 本文以脉冲频率调制降压变换器为例,介绍了将PFM纳入开关调节器设计和仿真中的技术。我前面的文章解释了脉冲频率调制的特性和目的。在本文中,我将把LTspice引入讨论中。我们将检查一些用于处理PFM的有用示意图,然后运行模拟并分析结果。 PFM降压转换器如果你已经阅读了我的模拟降压转换器的指南,图1可能看起来很熟悉——我们在文章中检查的PWM降压转换器具有与下面的电路相同的一般结构。 PFM降压转换器的LTspice示意图。•图1。在LTspice中实现的PFM降压转换器。但是,因为我们使用的是PFM,所以
- 关键字:
DC-DC,PFM LTspice PWM,脉冲频率调制
zvt-pwm介绍
您好,目前还没有人创建词条zvt-pwm!
欢迎您创建该词条,阐述对zvt-pwm的理解,并与今后在此搜索zvt-pwm的朋友们分享。
创建词条
关于我们 -
广告服务 -
企业会员服务 -
网站地图 -
联系我们 -
征稿 -
友情链接 -
手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司

京ICP备12027778号-2 北京市公安局备案:1101082052 京公网安备11010802012473