基于多特征SVMs分类器的手语识别*
结语
本文引用地址:https://www.eepw.com.cn/article/93422.htm本文提出了一种采用7Hu不变矩特征量等多种图像特征相融合的SVMs手语识别方法。实验表明,在手语识别中,采用图像全局和局部特征相结合的方法,可获得较高的识别率,为手语识别方法的早日推广应用提供了理论依据。
参考文献:
[1] TRIESCH J, MALSBURG C.ROBUST. Classification of Hand Postures Against Complex Background[C]. In: Intl Conf on Automatic Face and Gesture Recognition, 1998
[2] PARALEL HIDDEN. Markov Models for American Sign Language Recognition[C].Proceedings of the International Conference on Computer Vision, Kerkyra, Greece, September 22-25,1999
[3] 高文, 陈熙霖, 马继勇, 王兆其. 基于多模式接口技术的聋人与正常人交流系统[J]. 计算机学报, 2000.1
[4] YANG QUAN and PENG JINYE. Application of Improved Sign Language Recognition and Synthesis Technology in IB[C]. 3rd IEEE Conference on Industrial Electronics and Applications, June 2008.
[5] JIANPING FAN, YULI GAO, HANGZAI LUO. Integrating Concept Ontology and Multitask Learning to Achieve More Effective Classifier Training for Multilevel Image Annotation [J]. IEEE Transactions on Image Processing, Vol.17, No.3, 2008
[6] 吴锐航, 李绍滋, 邹丰美. 基于SIFT特征的图像检索[J].计算机应用研究, 第25卷第2期, 2008
[7] 中国聋人协会.中国手语[M]. 北京:北京华夏出版社, 1991
[8] ZHANG SHU-YA, ZHAO YI-MING, LI JUN-LI. Algorithm and Implementation of Image Classification based on SVM[J]. Computer Engineering and Applicationgs, 2007
[11] KONG RUI, ZHANG BING. A Fast Algorithm of SVM Based on Geometry[J]. Journal of Image and Graphics, Vol. 12, No. 6, June 2007
[12] W-Y. MA, B.S. MANJUNATH. Texture features and learning similarity[J]. IEEE CVPR, pp.425-430, 1996
[13] C. CARSON, S. BELONGIE, H. GREENSPAN, J. MALIK. Blobworld: Image segmentation using expectation-maximization and its application to image querying[J]. IEEE Trans. PAMI, 2002
评论