一种基于PLL的测试测量时钟恢复方案
由此可见,对抖动成分接近时钟恢复LBW的被测信号,LBW设置不正确可能会导致抖动测量不准确。有时标准会暗示要在测试中使用时钟恢复,例如提到“黄金PLL”,或指定要“在使用以20dB/decade将抖动衰减到(比特率/1,667)频率以下的单极、高通、频率加权函数后”测量抖动。
扩频时钟(SSC)把时钟能量(和数据)扩散在0.5%的频段上,降低了频谱给定频率上的平均功率。这可以帮助产品满足放射辐射和传导辐射的法规要求。为成功地追踪SSC,接收机必须能够追踪调制(包括其谐波),以避免眼图闭合。如果环路响应未能充分追踪SSC,或在时钟和数据路径之间出现错误的延迟,那么测试眼图就会模糊闭合。
不正确的峰值(即LBW附近区域,这里的时钟恢复设备抖动输出可能会大于抖动输入)可能会放大被测的抖动数量。此外,测试设备中相对于输入数据信号的触发延迟可能会导致测得的抖动数量不正确。例如,测量系统中的固定延迟可能会导致测得额外的明显抖动。增加的抖动幅度取决于相对于延迟量的抖动频率。
在接收机端,时钟恢复可能会出现在被测器件中,也可能作为测试设备校准程序的一部分出现。在被测器件中,时钟恢复频频出现,在测试中通常使用压力和正弦曲线抖动实现(参见图1中的b部分)。在正弦曲线抖动中,测试一般使用模板,这会在较低的调制频率上应用较多的抖动,或在较高频率上应用较少的抖动。
其中的问题包括在接收机中使用设计不当的LBW,这会导致抖动容限模板失效。追踪响应的斜率不正确可能会使追踪SSC的准确性不够,导致测试眼图模糊闭合,并产发生误码。
时钟恢复被频繁用于测试设备设置及接收机抖动容限或受压的眼图信号校准(参见图1中的c部分)。正弦曲线抖动通常设置成频率高于校准过程中时钟恢复的LBW。但是,LBW不正确可能会导致压力量设置错误,进而造成被测器件压力不足或过大,前者会提高客户拒收的可能性,后者则会影响良率。
从所有这些情况中,很容易得出这样的结论,即LBW设置非常关键,对测量中观察到的抖动有着明显影响。改变环路带宽可以显示抖动频谱。以非常窄的LBW进行测试,可以显示被测发射机产生的所有抖动。而使用非常宽的LBW进行测试,则只会显示发射机产生的、预定系统接收机用自己的PLL不能滤掉的抖动。一般来说,一致性测试中会指定后一种时钟恢复方式。系统设计人员主要关心超出接收机追踪能力的抖动。
分布式时钟方案
并不是所有系统都从数据流中导出时序。部分系统如PCI Express和全缓冲双直列内存模块(DIMM),它们使用发送到通信链路每一端的分布式时钟来为数据定时。发送端和接收端使用PLL来生成参考时钟。
一般来说,分布式参考时钟将有一定数量的抖动,如来自原始晶体的相位噪声。它也可能会有SSC。时钟在每个IC内再生,并用来为发送功能和接收功能提供时钟。每个PLL将有一个环路响应,如果其作用完全相同,那么一个PLL上的抖动完全可以由另一个PLL追踪,也就是说,接收机看不到任何净效应。但实际情况往往要更加复杂。
即使对采用相同设计、相同制造工艺及相同生产批次制造的器件来说,几乎也不可能获得完全相同的环路响应。由于确保IC之间及IC内部的路径长度一样也很困难,因此在接收机抖动中还会出现同等的触发延迟,导致出现更多的抖动。
评论