新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 基于TPS5430和MAXl674的智能充电器

基于TPS5430和MAXl674的智能充电器

作者: 时间:2010-11-15 来源:网络 收藏

2.1 切换电路设计
切换电路用于切换充电器升压工作和降压工作两种模式。设定切换的阈值电压为3.6 V。阈值电压由可调电阻设定并可调。充电电压超过阈值电压时降压电路工作,低于阈值电压时升压电路工作。切换电路由场效应管、电压比较器等分立元件构成,原理图如图3所示。

本文引用地址:https://www.eepw.com.cn/article/180267.htm

g.JPG
图3中。输入端VIN(P1)接充电,输出端P2接MAXl674升压电路的输入端,肖特基二极管VD1用于防止电流倒灌。稳压器TL431为电压比较器LM393的负输入端提供参考电压。输入端VIN(P1)通过滤波后接入电压比较器LM393的正输入端。调节R_ad可调电阻,使输入小于3.6 V时电压比较器LM393输出负电压,P沟道MOS管IRLM16402VQ1、VQ2和VQ3导通,VQ1,VQ2的漏极连接升压电路,使切换电路输入、输出端短接,使充电电压接至升压电路。当输入大于3.6 V时,输出高电平,VQ1、VQ2和VQ3截止,此时MAXl674升压电路无输入。VD2、VD3的作用是当电压大干3.6 V时,LM393的负端接地;当电压小于5.5 V时,LM393负通过VQ3接ICL7660的负电压输出引脚。
2.2 升压/降压电路设计
升压电路主要由升压式DC-DC电源转换器MAXl674组成。升压后输出4 V直接对进行充电。MAXl674升压电路如图4所示。

h.JPG


图4中,升压芯片的储能电感L1接MAXl674的LX引脚,电阻R1、R2和R3构成反馈网络,将输出电压反馈至FB引脚,芯片内部保持输出电压恒定。选取25 μH电感和680 μF电容组成一阶低通滤波器,截止频率i.JPG,以削弱纹波对输出电压的影响。
降压电路主要由降压DC-DC转换器TPS5430组成,降压后直接对进行充电。TPS5430降压电路如图5所示。

j.JPG
经测试,综合考虑效率因素,选定开关频率为500 kHz,输入端的电容C6和C7为旁路电容和降压滤波电容,由于转换器中开关在导通瞬间需要较大电流,通过旁路电容吸收瞬间大电流和滤除高频噪声信号使芯片保持稳定工作。电路输出功率越大,工作频率越低,对应的电容值也应越大。选取等效串联电阻阻值低,容值为10μF的电解电容。根据芯片数据资料,输出端电感L1的取值按公式计算,可得所需的电感值是15.8μH,选取内径30 mm的铁硅铝磁芯自行绕制的电感值为18μH,以保证在额定的工作状况下不会出现磁饱和。电阻R1、R2和R3构成反馈网络,将输出电压反馈到芯片的VSNS引脚,该芯片自动调节输出电压,保证充电器输出端输出电压恒定。



关键词: 电池 电源

评论


技术专区

关闭