实现UPS高可靠性的技术措施
(3)低直流总线(BUS)波纹系数。“六脉冲整流”是低频(50Hz)工作,而AC→DC变换器是高频(8~10kHz)PWM变换,因此直流滤波电容将大大减少。“六脉冲整流”为了降低直流BUS纹波,常采用数十只大容量电容并联,为了降低成本常选用电解电容,但电解电容在长期工作后常发生电解液干涸及漏电严重的现象。这些都是引起UPS不可靠工作的常见原因。M-UPS由于采用“高频整流”,因而滤波电容容量可降至电解电容的1/10,因此电容故障率可大为降低。
(4)低输出谐波失真。在100%的非线性负载下,输出电压波形失真度为:THD≤3%,而其他品牌一般为THD≤5%。从百分数看起来相差不大,但这是一个从量变到质变的过程,降低THD1%~2%,需要采取多方面电路设计措施。如果没有全数字化技术,没有双DSP控制是很难达到此指标的。众所周知,UPS大部分故障是由于非线性负载瞬间变化的冲击造成的,M-UPS对非线性负载的适应能力是很强的,故可靠性是很高的。
(5)混合型晶闸管开关。M-UPS从逆变器输出切换至旁路是采用可关断晶闸管(GTO)的静态开关与电流接触器并联方式,既满足了高速切换,而GTO器件又可以采取自冷方式,因此UPS体积小,而且提高了效率及可靠性。
(6)市电输入具有软起动功能。当输入交流电源恢复时,由于M-UPS设计有软起动功能,使输入电流缓慢上升,减少了UPS对输入电源的冲击,无论是由市电或自备发电机供电,都有利于提高转换的可靠性。
(7)逆变器输出端无晶闸管静态开关。M-UPS由IGBT/IPM功率器件组成的逆变器能够抑制瞬时大电流冲击,无需在UPS逆变器输出端接上其他品牌UPS都必须接入的晶闸管静态开关,此技术使M-UPS获得更高的效率和更高的可靠性。
(8)交流和直流功率分配功能。当UPS由自备发电机供电时,而自备发电机容量又不足,则UPS可以将输入容量限制在自备发电机的最大输出容量,不足部分则可由蓄电池供给,这样可以提高供电系统运行的可靠性。
(9)三相独立控制功能。M-UPS采用三相独立,瞬时波形控制,输出端可适用于单相或三相负载,同样可以提高供电系统运行的可靠性。
(10)非线性负载适应功能。M-UPS由于采用数字化及快速反馈技术,负载波峰因数比CF=3.6,对于100%非线性负载从空载(0%)到满载(100%)跳变,输出端电压的变动也极其微小,从而大大提高其适应任何负载运行的可靠性。
5高超的冗余并机技术
大功率UPS虽然可靠性提高,但由于使用环境的突然变化(如市电电压超出范围、负载瞬间故障)、运行人员的错误操作、UPS本身零件的老化、个别元器件早期失效等因素都会导致UPS发生故障,对诸如金融、航空、医疗、邮电、交通、国防等系统要求供电质量很高的负载,还必须进一步提高UPS的可靠性。
近年来世界上发展了多种方法来扩展大功率UPS系统的平均无故障时间,其中冗余并机技术发展较为迅速。冗余方法确能提高USP系统的可靠性,但如何实现“冗余”却是值得研究的问题。M-UPS由于采用全数字化电路设计,因而具有高超的冗余并联运行技术,有别于并机柜、并机板、并机模块及无线并机等并机方案。
(1)并机运行的UPS配备独立的电压与相位控制,没有公共控制部分,不存在“瓶颈”现象。
(2)并机调试非常简单,只须每台UPS参数设置好后,即可投入并联运行,不需要像有些品牌UPS要在满负荷运行时调节功率均分。
(3)由于M-UPS全数字化控制及软件设置参数,并机运行的每台UPS输出波形、相位及电压值都非常一致,因此并机环流几乎为零,这样除了提高运行效率外,更重要的是提高并联联运行的可靠性。
(4)在没在并机柜的条件下,可以多机并联运行。理论上不受并机台数的限制;目前已投入实际运行的系统为8台UPS并联运行。
(5)在并联系统中的一台UPS发生故障及正在维修时,负载仍能保证由UPS供电,不像有些品牌UPS需要转入维修旁路,M-UPS能真正做到脱机维修,这是提高并机系统可靠性的关键所在。
(6)超长的平均无故障时间,两台UPS并联加上静态旁路系统,使MTBF数值大幅度提高。
由于M-UPS采用优化的设计、先进的工艺、严格的生产管理,使其具有很高的固有可靠性;同时由于M-UPS采用高质量、高可靠的功率器件IGBT/IPM,全数字化的设计,直接数码控制技术,使其在世界UPS品牌中脱颖而出。它除了具有高质量、高指标、高可靠、多功能等特点外,还兼具节能、环保功能,它不仅满足今日的需要,更是UPS今后发展的方向。
评论