低压输入交错并联双管正激变换器的研究
式中:ωr=1/;
Zr=;
L2=L2M+L2S。
这一时段D3、D4上的电压uD3=uD4=Uin-uds3,uT2PR1M=Uin-2uds3,t2时刻
uds3(t2)=uds4(t2)=Uin· (6)
i1M(t2)=I1M(+)=(Uin/L1M)DTs (7)
i1M(t2)=(Vin/Zr)sin(ωrt1-2) (8)
式中:t1-2=t2-t1=(1/2-D)Ts。
3)开关模态3[t2~t3][参考图3(c)]
t2时刻,Q1、Q2关断,D1、D2开通续流,T1磁化电流从正向最大值I1M(+)线性下降,
i1M(t)=I1M(+ )-(Uin/LM)(t-t2) (9)
i1M(t3)=(Uin/LM)(2D-1/2)Ts (10)
D5关断,D7开通,负载电流Io经D7续流。此时,T2原边继续谐振,因此时T2绕组(所标同名端)电压为正,使得D6、D7同时导通,把T2副边箝位为零,从而谐振回路变为T2漏感L2S与Q3、Q4结电容的谐振,释放漏感能量,使得T2磁化电流到零,uds3、uds4迅速上升至Uin/2,之后保持在Uin/2,直到下一开关状态。
4)开关模态4[t3~t4][参考图3(d)]
5)开关模态5[t4~t5][参考图3(e)]
6)开关模态6[t5~t6][参考图3(f)]
t3时刻,对应下半周期开始,两路双管正激电路互换工作状态,重复前半周期的工作情况,对应的相关公式互换一致,这里不再赘述。t6时刻,Q1、Q2再次开通,开始下一个周期。
3 电路特点分析
从以上开关模态分析可知,双路交错并联双管正激DC/DC变换器交替工作,向副边传输能量,通过二极管D1、D2或D3、D4向电源回馈能量,实现铁心磁复位,电路结构简洁。并且主功率管关断期间只承受电源电压,这样就可以选用低压高速、导通电阻小的功率管,从而减小功率管导通损耗和开关损耗。
而且,因两路交错并联结构的使用,电路具有以下优点:
——在同样开关频率下,输出滤波电感上电压的频率提高了一倍,这样减小了输出滤波电感的体积;同时输入电流脉动频率提高一倍,亦减小了输入滤波器的体积,从而进一步减小整机的体积。
——由于两路交错并联,使得整流侧输出电压等效占空比增加一倍,这就带来两个好处:一是使功率管工作在占空比小于0.5的情况下,整流侧输出电压占空比可以在0~1之间变化,提高了电路的响应,并有利于驱动电路的设计;二是在同样输出电压的情况下,整流侧峰值电压减小一半,续流时间减小,有利于选择低电流定额的续流管。
——并联结构可以使每个并联支路流过更小的功率,消除变换器的“热点”,使热分布均匀,提高可靠性。
在原理分析和样机制作中,我们也注意到寄生参数的谐振会使变压器出现小范围的双向磁化,但由于谐振参数均较小,因此,对变压器铁心的选择以及变换器工作影响不大,最大占空比仍可取在0.5左右。
4 实验结果及讨论
在对双路交错并联双管正激DC/DC变换器工作原理分析基础之上,完成了一台DC 27V/DC 190V,1kW的样机研制,样机的主要实验数据为:
——输入直流电压:20~30V;
——输出直流电压:190V;
——电感:R2KBDEE40铁心;
——变压器:R2KBDEE42B铁心;
——变压器原副边匝比:1/10;
——MOSFET:IRF3205;
——开关频率:fs=120kHz;
——磁复位二极管:IN5822;
——输出整流管:MUR8100;
——输出续流管:MUR8100。
图4给出了满载时开关管MOSFET栅源电压ugs和漏源电压uds的波形图,与理论分析基本相同。图5给出副边整流二极管D5和续流二极管D7的电压波形,可以看出续流管关断时由于其反向恢复造成了电压振荡。图6给出了额定输入电压DC 27V时,变换器的效率与输出电流的关系。
图7所示为副边整流电路,交错并联电路结构使副边输出电压UA的等效占空比加倍,虽然可以减小输出滤波电感的体积,但却使续流管D7的开关频率加倍,处于更高频率的开关过程。由于D7存在反向恢复,这样会在D5、D7以及T1副边(D6、D7以及T2副边)形成环流,造成更大的损耗,如果在t1~t2段di/dt过高(如图8所示),不仅会引起振铃现象而产生严重的电磁干扰,而且还可能会因为瞬态尖峰电压太高而损坏二极管或电路中的其它半导体器件,因此D7宜采用t0~t1恢复时间短而t1~t2时间长即柔度系数大的快恢复二极管。
同时应当尽量减小变压器副边漏感,并使D5、D7、T1副边绕组(D6、D7、T2副边绕组)所围面积最小以减小线路寄生杂感。
图4 Ch2—ugsCh1—uds
评论