阶跃响应法在浮地交流系统绝缘故障定位中的应用初探
由于对穿心式电流传感器,原边电流可认为不受副边电流的影响,因而以下,仅对副边回路进行分析,副边的电压方程可表达为:
式中,Φ2表示键链副绕组的总磁通,亦即Φ2=Φ+Φ2s。其中Φ=12(i1+w2i2),Φ2s=
2sw2i2,
12和
2s分别表示互磁路和副漏磁路的磁导[6]。则(2)式可表达为:
称副绕组漏感,M=
12w2,称原副绕组间的互感。则式(4)可改写为:
如令L2=S2+Mw2表示副绕组的总自感,则式(5)又可改写为:
对式(6)所表达的线形方程,可采用拉氏变换求解。因i1(0_)=0,i2(0_)=0,则(6)式经拉氏变换可表达为:
式(9)代入式(8)后,可得:
由于传感器在设计时,L2很大,使得τ2>>τ1,于是(11)经拉氏反变换后,可得传感器感应电流i2(t)的近似时域表达式:
为分析i2 ,同原边电流一样,分三种情况进行讨论:
① 当IR = IC时,副边感应电流阶跃上升至IR/w2后,按指数规律(时间常数为τ2)衰减至零,见图4曲线b;
② 当IR > IC时,副边感应电流阶跃上升至IC/w2后,先按指数规律(时间常数为τ1)上升,而后按指数规律(时间常数为τ2)衰减至零,见图4曲线c;
③ 当IR IC时,副边感应电流阶跃上升至IC/w2后,先按指数规律(时间常数为τ1)迅速下降,而后按指数规律(时间常数为τ2)衰减至零,见图4曲线a。
从图4中,可以发现:
① 副边感应电流波形变化包含了两个指数变化规律,分别对应于时间常数τ1和τ2,且τ2>>τ1;
② 在波形初期,容性电流变化部分能较充分地反映在副边感应电流中,体现了传感器的互感应过程,且容性电流在很短的时间内迅速衰减并收敛至阻性电流上,时间常数为τ1;
③ 初期过后,原边穿心电流稳定不变,阻性电流以较慢的速度衰减,时间常数为τ2,体现了副边大电感对电流(线圈磁通)变化的抑制过程。
基于上述分析,交流电流传感器为满足阶跃响应法的要求,应能较好地感应原边电流微小的动态变化,且当原边电流稳定不变时,副边线圈中剩余磁链(电流)能以较大的时间常数缓慢衰减。为此,应采用极高导磁率的铁心材料及合理的结构形式,使其具有较大的互磁路的磁导12(互感M)和尽可能小的副漏磁路的磁导
2s(副边漏感S2),同时通过副边绕组匝数的增加,保证传感器的变比尽量趋近于原副边匝数之比,以满足传感器对微小动态变化的感应;自感L大,以满足剩余磁链(电流)以较慢的速度衰减的要求。
1.3 考虑到工频零序电流作用时的传感器副边感应电流
当故障漏电流(传感器原边电流)同时有直流和工频交流信号时,对传感器副边感应电流的计算可采用叠加原理。对工频漏电流信号在传感器副边感应电流的计算,可采用副边参数变量归算至原边的方法。假定原副边漏感系数远远小于互感系数,可得到原副边电流的近似对应关系:
其中,I0和α0分别为工频零序电流的幅值和起始相位角,f为工频电流频率。利用叠加原理可以得到有工频零序电流作用时的传感器副边感应电流:
霍尔传感器相关文章:霍尔传感器工作原理
霍尔传感器相关文章:霍尔传感器原理
评论