一种具有恒功率控制的单级功率因数校正电路
工作模式1(t0-t1) t0时刻开关S导通,直流母线电压VB加在励磁电感Lm上,由于flyback变换器工作在CCM模式,则电流im线性上升可表示为
im=(t-t0)+im(t0) (1)
而电感Lb工作在DCM模式,电流iLb由零线性上升,其表达式为
iLb=(t-t0) (2)
开关S上流过的电流可表示为
isw=iLb+im (3)
由于二级管Df反向偏置,所以线圈Ns和Np上没有电流流过。
工作模式2(t1-t2) 开关S在t1时刻关断,二极管Df正向偏置,励磁电感Lm上的电压为nVo(其中n=Np/Ns),则电流im线性下降可表示为
im=-(t-t1)+im(t1) (4)
开关S上的漏源电压VDS为VB+nVo,电感Lb上的电流iLb流过线圈Np和电容CB线性下降,其表达式为
iLb=-(t-t1)+iLb(t1) (5)
因此,原边线圈Np和副边线圈Ns上流过的电流可分别表示为
ip=iLb+im (6)
is=nip=n(iLb+im) (7)
由式(7)可以看出副边电流由两部分组成,负载不但从励磁电感Lm上获取能量而且直接从电感Lb上获取能量,这就意味着一部分能量可以不经过储能电容CB而直接传递给负载,因此,大大提高了效率并且降低了直流母线电压。
工作模式3(t2-t3) t2时刻电流iLb下降到零,二极管Db反向偏置,励磁电流继续以斜率nVo/Lm线性下降直到t3时刻开关S再次导通。此时原边线圈Np和副边线圈Ns上的电流可分别表示为:
ip=im (8)
is=nip=nim (9)
2 恒功率控制方法
图4给出了恒功率控制的框图,图中KVV和KIIo分别为电压采样值和电流采样值,通过电阻R3及R4的分压得到第一个运放的正向输入端电压为+
,信号放大后得到运放的输出端电压为
,这一点的电压和第二个运放的反向输入端电压相等,根据运放的虚短特性,得到第一个运放的输出电压与第二个运放的正向输入端电压相等,即
=Vref,由此可得到式(10)。
+
=
(10)
图4 单级功率因数校正控制框图
假设a=R2/R1,b=R4/R3,则式(10)表示为
+
=
(11)
从式(11)可以得到输出功率Po的表达式为
Po=VoIo=-Vo2+
Vo (12)
从式(12)可以看出Po~Vo曲线是一条抛物线,在抛物线的顶点附近,输出功率Po近似恒定。以输出电压80V,输出功率80W为例,取KV=0.01,KI=0.1,Vref=5V,使抛物线的顶点位于Vo=80V,Po=80W处,则可以计算出a=27.13,b=8.00。于是式(12)可表示为
Po=-0.0125Vo2+2Vo (13)
当输出电压变化范围为60V~100V(±25%)时,输出功率变化为6.25%。
该电路同时具有限压和限流的功能,通过变换式(11)可得
评论