新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 高速CMOS钟控比较器的设计

高速CMOS钟控比较器的设计

作者: 时间:2011-02-23 来源:网络 收藏

  1. 3 输出缓冲级电路结构

本文引用地址:https://www.eepw.com.cn/article/179678.htm

  比较器的最后一级是输出缓冲级(又被称为后放大器) ,其主要作用是把判断电路的输出信号转化为数字逻辑电平(0 V或1. 8 V) ,输出缓冲器的输入是一对差分信号,没有压摆率的限制。本文采用自偏置的差分放大器( self2biasing differential am2p lifier)作为输出缓冲级,同时在放大器的输出端加两级反相器,用作附加的增益级,并实现负载电容和自偏置差分放大器之间的隔离。

  图3所示是一个自偏置的差分放大器,它包括两个差分放大器,每一个均作为另一个的负载。M15和M16的栅极没有连接到外部偏置,而是连接到M17和M18的漏级,形成负反馈环路,来实现差分放大器尾电流的自适应。M15和M16工作在线性区,可以获得大的输出电压摆率,使得输出电压直接转换到数字逻辑电平。当M17和M18的栅极电压增大时,M17和M18的漏级电压下降,并使M15导通,电流增大,这个电流通过M19流向连接在M19和M20漏极的输出电容。在这种情况下,M16的电流为零。当M17和M18的栅极电压下降时,M16导通,那么大电流经过输出电容通过M16泄露。因此,这一结构的电路具有吸入和供出大电流的能力, 且没有静态电流,这个特性非常适合于高速比较器的应用。

自偏置差分放大器


图3 自偏置差分放大器

  2 电路的优化设计

  2. 1 速度优化

  比较器的工作速度与预运放的增益、时间常数和判断级的时间常数有关。图4给出了预运放交流小信号等效电路图。

  在该电路中, gm1 = gm2 , gm3 = gm4 , gm5 = gm6 , CA =CB ,由图可得预运放的传输函数为:



  从式(2)可以看出,只要gm5小于gm3 ,预运放的极点就在左半S 平面, 系统将是稳定的。预运放的直流增益为:


  从式(4)可看出,由于添加了交叉耦合负载M3和M4 ,预运放的增益提高了gm3 / ( gm3 gm5 )倍, 只要调整M3、M4 与M5、M6 的宽长比, 即调整gm3与gm5之比,就可方便地调整预运放的增益提升量。

  从式( 2) 还可以看出, 预运放的时间常数为CA / ( gm 3 gm5 ) ,降低预运放的时间常数需要减小预运放输出端的电容, 同时合理选择差分对管的偏置电流并适当提高gm5与gm 3的差。

预运放交流小信号等效电路图

 图4 预运放交流小信号等效电路图。

  当时钟信号CLK为低电平时,判断级的等效电路如图5所示。其中Vi9和Vi10分别为M9 和M10漏极的初始电压, C9、R9 和C10、R10分别为M9、M10管漏级到地的电容与电阻,理想情况下M9 和M10完全对称, R9 = R10 = R, C9 =C10 =C。


( a)判断级等效原理图, ( b)小信号等效模型

 图5 ( a)判断级等效原理图, ( b)小信号等效模型。

  由图5 ( b)小信号模型得到比较器传输延时的时间常数为:



  其中τ= RC, Iss为判断级的尾电流源(M14 )电流。根据式(5) ,为了减小时间常数提高比较器的速度,一般可以采用最小尺寸的沟道长度, 此外还可以增大判断级的尾电流,但这也会带来功耗增加和输入共模范围减小等不利因素。



关键词: 电源

评论


技术专区

关闭