直流与反向供电通道的保护及其集成方案
1. 过压锁定能力。只有在总线电压低于系统的最大额定电压的时候,保护器件才应该是导通的。如果出现过压,保护器件应该处于断开状态以保护内部的系统。
2. 具备抗过压能力。采用墙式适配器充电的时候为+28V,利用USB充电的时候为+20V。
3. 具有电流通过能力。利用墙式适配器充电的时候,电流可能达到1A甚至2A;在使用USB充电时,最大电流为500mA,
4. 能够对浪涌电流进行控制。
5. 保护器件与充电IC应该相互独立。
如果具备了以上特性,直接充电通道将会得到良好的保护。
对于反向供电通道来讲,设想的解决方案(Box)必须解决以下几个问题:电池放电、反向过流、反向浪涌电流、短路保护,并尽量降低反向电路的电压电路。
电池放电。当输入电压低于电池电压时,应该避免电池放电,因为此时附件可能是没有插入的。这时应该采用背对背的解决方案,在Vin小于Vbat的时候,防止电池漏电。只有在检测到附件时,才支持反向供电。
图2 建议解决方案
反向过流保护功能。当连接错误的附件或有缺陷的附件的时候,电池仍然有可能放电到附件,而且反向放电的电流可能超过充电通道的电流通过能力。由于充电器无法检测到反向电流,因此需要增加另外的模块来检测反向电流。
反向浪涌电流抑制。插入附件的时候,如果没有电流保护方案,可能从电池流出极高的浪涌电流,而且可能产生过高的振铃,从而损害器件,所以必须采用电流监测功能来控制反向MOSFET的门极,从而消除振铃和浪涌电流。
短路保护。如果附件出现直接短路,可能会瞬时涌现源自电池的极高电流,所以保护器件应该提供过流保护,而且可以通过外部电阻对电流进行设置以适应不同的系统要求。另外,保护器件应该具有自动恢复功能,即当外部短路状况消除之后,系统会自动地恢复工作。
从电池到外部附件的电压电路。必须降低电池和附件之间的损耗,如果电压电路过高的话,会产生额外的损耗,影响到电池的可用电压。
综上所述,设想的保护方案(Box)应该具备以下的特性:
1. 对于电池放电来讲,应该采用背对背的结构,防止电池漏电。
2. 应该具备反向过流保护功能。
3. 应该对反向浪涌电流进行控制。
4. 应该对反向供电通道的短路进行保护。
5. 导通电阻应该尽可能的低,即使通道的电压跌落尽可能的低,减少额外的损耗。
只有具备了以上特性,反向通道才能得到良好的保护。
因此,我们建议的解决方案的架构是:具有背对背的N-MOSFET、具备正向和反向的过压保护以及反向过流保护功能、具有极低的静态电流等功能。(图2)
评论