选择最优的190W纤薄PFC电源段方案
交错式PFC包含两个支路,每个支路各传输总功率的50%。因此,这种方案采用的元器件数量更多,但尺寸更小。为了简单起见,这里就不具体的交错式设计准则。但如参考资料[5]中所详细介绍的,交错式技术能够优化下列元器件:
-功率MOSFET:在每个支路,MOSFET均方根(rms)电流仅为单相CrM或FCCrM PFC段中使用的11 A MOSFET的电流的一半。两颗5 A MOSFET替代了11 A MOSFET。
-升压二极管:同样,每个支路的升压二极管传输的电流是总电流的一半。因此,各个支路就有可能使用较小的MUR160。
-大电容:交错式方案迫使两个支路异相(out-of-phase)工作,旨在大幅降低大电容的均方根电流(降至0.8 A而非1.3 A)。这样,就可能使用2个39 ?F/450 V电容,而非3个。
-电磁干扰(EMI)滤波器:交错式方案也削弱了电流纹波。例如,在典型宽主电源电压应用中,峰值到峰值纹波在0至60%之间变化。减小的纹波简化了差模滤波。如图3所示,交错式PFC采用了10 ?H电感来通过EN55022规范,而单相CrM(或FCCrM) PFC要求使用50 uH差模线圈。

FCCrM与CrM单相方案采用几乎相同的功率元器件,因为它们在重负载条件下采用相同方式工作,器件的参数也是针对重负载条件工作而选定的。但如前所述,FCCrM方案中使用的电感尺寸更小。(单FCCrM方案段中)使用了单个200 ?H EFD30线圈,而非两个串联的200 ?H EFD30线圈。显而易见的是,控制器也变了。CrM方案采用NCP1607驱动。为了方便起见,没有使用特别控制器来测试FCCrM单相方案,相反,我们复用了参考板中使用的NCP1631交错式FCCrM控制器,只是简单地关闭驱动第二个支路的输出,从而获得单相FCCrM工作。
小结
表3小结了三种方案的设计差别,其中根据所选择的方案列举了可能选择的主要元器件,其中包括控制器(单相方案中采用了专用FCCrM控制器NCP1605而非NCP1631)。根据这些设计差别推算成本优劣势,可以看出交错式方案是性价比最高的方案。单相FCCrM是成本第二低的方案,而传统CrM方案成本最高!如果以CrM方案作为参照,其它方案提供的优势小结如下(见表1):

表3-FCCrM单相方案少用一个EFD30电感
-FCCrM交错式方案也减小磁性元件(使用两个EFD20而非两个EFD30), 但进一步节省一个39 ?F/450 V电容,从而能够使用较小的差模扼流圈,并采用更小、更便宜的MOSFET及升压二极管工作。
计算出精确的成本优势很困难。但是,仍然以CrM方案作为参照,并顾及(大批量)消费市场的成本结构,可以粗略估计出交错式PFC方案具有0.5美元的成本优势,而(单相式)FCCrM的成本优势减半。
FCCrM单相及交错式方案总体上更便宜,尽管用于驱动它们的控制器(分别是NCP1605和NCP1631)成本更高。这两款IC集成了比NCP1607 CrM控制器更多的功能,如输入欠压保护、待机管理功能,或在大电压不是额定值时关闭下行转换器的“pfcOK”信号。这些额外特性能够帮助最终应用节省元器件,因此进一步增强FCCrM单相及交错式方案的成本优势。
结论
虽然通常人们认为单相CrM方案是200 W及以下功率应用最便宜的PFC方案,但本文的研究显示,FCCrM交错式方案实际上是我们所举190 W应用性价比最高的方案。当我们仔细考虑其特别优势时,这个结论完全不奇怪。交错式方案要求更多的元器件,但它们尺寸更小,成本更低。此外,输入及输出电流纹波减小也支持使用更廉价的EMI滤波器及大电容。最后,FCCrM工作大幅减小电感尺寸,这种特性使得单相FCCrM方案优于单相CrM方案。显而易见的是,这些研究结论尤为适用于低高度(13 mm)装置,但在元器件选择灵活度更高的其它应用中仍然适用。
评论