新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 开关电源电磁兼容性问题研究

开关电源电磁兼容性问题研究

作者: 时间:2012-10-31 来源:网络 收藏

(2)由高频变压器初次级之间分布电容引起的共模传导干扰

共模干扰是一种相对大地的干扰,所以它不会通过变压器“电生磁和磁生电”的机理来传递,而必须通过变压器绕组间的耦合电容传递。在开关电源的高频变压器初次级之间存在着分布电容是个不争的事实。

3.6 产生干扰的其它原因

开关电源为了提高功率因数,均采用了有源功率因数校正电路。同时,为了提高电路的效率及可靠性,减小功率器件的电应力,大量采用了软开关技术。其中零电压、零电流或零电压零电流开关技术应用最为广泛。该技术极大地降低了开关器件所产生的电磁干扰。但是,软开关无损吸收电路,多利用L、C进行能量转移,利用二极管的单向导电性能实现能量的单向转换。因而,该谐振电路中的二极管成为电磁干扰的一大干扰源。

开关电源中,一般利用储能电感及电容器组成L、C滤波电路,实现对差模及共模干扰信号的滤波,以及交流方波信号转换为平滑的直流信号。由于电感线圈的分布电容,导致电感线圈的自谐振频率降低,从而使大量的高频干扰信号穿过电感线圈,沿交流电源线或直流输出线向外传播。随着干扰信号频率的上升,由于引线电感的作用,导致电容量及滤波效果不断下降,直至达到谐振频率以上时,完全失去电容器的作用而变为感性。不正确地使用滤波电容及引线过长,也是产生电磁干扰的一个原因。

开关电源PCB布线不合理、结构设计不合理、电源线输入滤波不合理、输入输出电源线布线不合理、检测电路的设计不合理,均会导致系统工作的不稳定或降低对静电放电、电快速瞬变脉冲群、雷击、浪涌及传导干扰、辐射干扰及辐射电磁场等的抗扰性能力。

4 电磁兼容性研究及解决方法[3][4]

电磁兼容性的研究。一般运用CISPR16及IEC61000中规定的电磁场检测仪器及各种干扰信号模拟器、附助设备,在标准测试场地或实验室内部,通过详尽的测试分析、结合对电路性能的理解来进行分析研究。

从电磁兼容性的三要素讲,要解决开关电源的电磁兼容性,可从3个方面入手:

(1)减小干扰源产生的干扰信号;

(2)切断干扰信号的传播途径;

(3)增强受干扰体的抗干扰能力。

在解决开关电源内部的电磁兼容性时,可以综合运用上述3个方法,以成本效益比及实施的难易性为前提。

对开关电源产生的对外干扰,如电源线谐波电流、电源线传导干扰、电磁场辐射干扰等,只能用减小干扰源的方法来解决。一方面,可以增强输入输出滤波电路的设计,改善有源功率因数校正(APFC)电路的性能,减少开关管及整流续流二极管的电压电流变化率,采用各种软开关电路拓扑及控制方式等。另一方面,加强机壳的屏蔽效果,改善机壳的缝隙泄漏,并进行良好的接地处理。

对外部的抗干扰能力,如浪涌、雷击,应优化交流输入及直流输出端口的防雷能力。通常,对1.2/50µs开路电压及8/20µs短路电流的组合雷击波形,因能量较小,可采用氧化锌压敏电阻与气体放电管等的组合方法来解决。对于静电放电,通常在通信端口及控制端口的小信号电路中,采用TVS管及相应的接地保护、加大小信号电路与机壳等的电距离,或选用具有抗静电干扰的器件来解决。快速瞬变信号含有很宽的频谱,很容易以共模的方式传入控制电路内,采用防静电相同的方法并减小共模电感的分布电容、加强输入电路的共模信号滤波(如加共模电容或插入损耗型的铁氧体磁环等)来提高系统的抗扰性能。

减小开关电源的内部干扰,实现其自身的电磁兼容性,提高开关电源的稳定性及可靠性,应从以下几个方面入手:注意数字电路与模拟电路PCB布线的正确区分、数字电路与模拟电路电源的正确去耦;注意数字电路与模拟电路单点接地、大电流电路与小电流特别是电流电压取样电路的单点接地以减小共阻干扰、减小地环的影响;布线时注意相邻线间的间距及信号性质,避免产生串扰;减小地线阻抗;减小高压大电流线路特别是变压器原边与开关管、电源滤波电容电路所包围的面积;减小输出整流电路及续流二极管电路与直流滤波电路所包围的面积;减小变压器的漏电感、滤波电感的分布电容;采用谐振频率高的滤波电容器等。



关键词:

评论


相关推荐

技术专区

关闭