RGB-LED背光系统的散热研究
图8 结点与环境之间热阻的测量设备示意图
6 阳极氧化绝缘铝基线路板的热阻
常规聚合物绝缘金属基线路板和阳极氧化绝缘铝基线路板的热阻可以通过上述方法计算得到。
使用上述方法我们很容易能计算得到两种金属基线路板的热阻,本文并不满足于单一的整体热阻,同时也测量计算了线路板各个部分的热阻。
线路板各部分的热阻呈串联模式,例如基板到环境的热阻就是基板到热沉的热阻与热沉到环境的热阻之和。
图9 是常规聚合物绝缘金属基线路板的测量设备,图10 是阳极氧化绝缘铝基线路板的测量设备。
图9 常规聚合物绝缘金属基线路板的测量设备
图10 阳极氧化绝缘铝基线路板的测量设备
常规聚合物绝缘金属基线路板和阳极氧化绝缘铝基线路板的热阻值如图11 和图12 所示。
图11 常规聚合物绝缘金属基线路板的热阻
图12 阳极氧化绝缘铝基线路板的热阻
从上述的计算结果我们可以发现,阳极氧化绝缘铝基线路板的热阻要比常规聚合物绝缘金属基线路板的热阻低59. 2%。
从上述示意图中我们也能发现,有两个因素导致了阳极氧化绝缘铝基线路板的热阻要比常规聚合物绝缘金属基线路板的热阻低:
1) 常规聚合物绝缘金属基线路板在结构上比阳极氧化绝缘铝基线路板多一层。
2) 阳极氧化绝缘铝基线路板上的阳极氧化绝缘层要比常规聚合物绝缘金属基线路板上的聚合物绝缘层薄很多,而且其导热性能也优良得多。
7 结论
在RGB-LED 背光系统的开发过程当中, 散热是个非常重要的课题,本文实现了一种新型的铝基绝缘线路板并提出了一种改进的电气参数热阻测量方法。相对于常规聚合物绝缘金属基线路板,阳极氧化绝缘铝基线路板具有如下优势:
1) 在线路板的阳极氧化绝缘层和铝基层之间没有机械连接缝隙,提高了线路板整体的机械性能。
2) 在金属化层的三层膜使用磁控溅射技术生成,能提供至少1000N / cm2 的结合力,这一点同样提高了线路板整体的机械性能。
3) 新型的线路板减少了常规线路板的层数,减小了绝缘层的厚度,使其整板的热阻比常规线路板降低了59. 2%。
评论