RGB-LED背光系统的散热研究
4. 1 铝基的阳极氧化处理
铝基首先要进行衬底表面脱脂和消毒处理,然后放进充满电解质的电解槽中。电解质可以是硫酸或者草酸,电解质由氧化层的性能要求和工艺条件决定。在氧化处理的过程中,铝基表面作为阳极。
工艺条件包括电解液浓度, 电流强度和电解温度,为了得到合格的阳极氧化绝缘层,电解时间应该被控制好。
4. 2 磁控溅射技术镀膜
在开始镀膜之前,我们首先需要在阳极氧化绝缘层上用光刻或者掩膜技术画出电路图。如采用光刻工艺制作电路图形时,要在氧化处理好的铝板上涂布感光、曝光、显影等处理,在将铝板装夹到没有掩膜的夹具上。如采用掩膜工艺制作电路图形时,只是在装夹氧化处理好的铝板时在夹具的面上装掩膜板即可。
4. 3 后道工序
根据设计要求,对镀好膜的铝基绝缘氧化印刷电路板在相应的位置涂助焊剂和阻焊剂,以便安装电子元器件。
5 热阻计算方法
热阻,即导热物质阻止热量从热源传导到吸热设备的一种阻抗,其单位为℃ /W,如图6 所示。
图6 热阻即导热物质阻止热量从热源传导到吸热设备的一种阻抗
热阻的定义如下:
其中,Rθ为两点之间的热阻,ΔT 为这两点间的温度差,P 为热量在这两点间的传播速率。
5. 1 热阻计算方法
测量LED 热特性的主要方法有红外热成像法、光谱法、光功率法、引脚温度法和电气参数法。本文提出了一个改进的电气参数法。我们看一个结点与环境之间的热阻测量的例子,参照图7。
图7 结点与环境之间的热阻的计算方法示意图
结点与环境之间的热阻有如下表达:
其中,Rθj - a为结点与环境之间的热阻,Tj为结点的温度,Ta为环境温度,P 为在热平衡状态下LED的散热功率,有如下表达式:
其中,PEL为电功率,POPT为光功率。如果电流足够小,结点温度变化量ΔTj与正向电压变化量ΔVf呈良好的线性关系,因此,结点温度可以做如下表达:
其中,K 为温度灵敏度系数。此外,最初的结点的温度Tj0几乎和环境温度Ta相同,所以,结点与环境之间的温度差可用以下关系描述:
通过整合公式(2)、(3) 和(5) ,我们最终可以得到如下公式:
5. 2 结点到环境的热阻测量步骤
从公式( 6 ) 可以看出, 为了确定材料热阻Rθj - a,必须确定结点上升的温度、进入测试LED 电功率和光功率。通过测量测试LED 的正向电压的变化量,结点上升的温度可以很容易的确定,如公式(4) 所示。通过将测试LED 的正向电压和正向电流相乘,其电功率可以轻松计算而得。但其光功率却不好确定,因为较电功率而言光功率实在太小了,因此我们忽略它的影响。
结点到环境的热阻测量步骤如下所述,其测量设备的示意图如图8 所示。
1) 选择一个大功率LED 为加热LED 并且选择一个常规的LED 作为测试LED。
2) 根据公式(4) 所示,测量并计算测试LED的温度灵敏度系数K,或在某些技术文件中查找。
3) 电隔离两个LED。
4) 用细长导线将加热LED 正极一端与测试LED 正极一端相焊接,并将他们公共的阴极相连。
由于它们将用于承载加热电流与测量测试LED 的ΔVf,所以导线需要足够长以用于外部的扩展。
5) 在测试电流If很小的情况下,测量测试LED的初始Vf0 。只有测试电流非常小时, 才会产生很少量的热量。
6) 给加热LED 加上设计之后的电压。由于要使设备热稳定,所以至少保持这种状态30 分钟。
7) 在加热电流下,测量测试LED 的Vf 。
8) 关闭加热LED,并立即再设计电流下,再次测量测试LED 的Vf1 。
9) 将ΔVf( Vf1 - Vf0) 与K 相乘以计算测试LED 的ΔTj 。
10) 将Vf与If相乘以计算散热功率,这里我们假设散热功率等于它的电功率。
11) 利用公式(6 ) 计算结点与环境之间的热阻。
评论