基于运放退饱和的电阻炉温度控制系统设计
基于以上设计思路,设计出一套由两级运放组成的反馈控制电路,电路图如图2所示。电路输入是由热电偶从电炉反馈回的热电动势,经第一级运放放大后与温度控制信号Vcon进行差值运算后经第二级放大输出。当热电偶反馈信号小于Vcon时,第二级运放饱和输出,555电路输出脉冲占空比最大,从而IGBT导通时间最长,电炉加热功率最大。当热电偶反馈信号超过Vcon时,第二级运放开始退饱和,输出减小,555电路输出占空比减小,IGBT导通时间变短,电炉加热功率变小,从而使电炉温度在设定温度上下变化。设定温度值可以通过改变温度控制信号Vcon与Rf、R2的值来改变,电路简单实用,便于调整。
2 数据分析与仿真
为了验证电路设计参数以及与实际电路的运行结果进行对照,利用Multisire仿真软件对电路进行了仿真测试。电路采用K型镍铬一镍硅热电偶进行反馈,K型镍铬-镍硅热电偶分度表如表1所示。本文引用地址:https://www.eepw.com.cn/article/159596.htm
仿真中,设定900℃为温度期望值,使运放在820℃时开始退饱和,查表1可知820℃时热电偶反馈电动势为34.095 mV,通过调整、Rf及R2使设定温度为此值对应温度。首先,在图2所示电路输入端加上连续变化的正弦信号(低频)来模拟热电偶反馈信号,正弦信号幅度为45 mV,即反馈信号Vi在0~45 mV周期性变化,查表1可知,相当于电炉温度是在0~1 100℃周期性变化,仿真结果如图3所示,双踪示波器A路(线1)显示幅度为45 mV的正弦输入信号,B路(线2)显示第二级运放的输出信号,可以看到运放是从Vi=34.321 mV处开始退饱和,由表1知对应温度稍高于820℃,误差较小,符合设计预期。
评论