- 运算放大器电路中常见的问题之一是稳定性。本文将解答有关稳定性的三个重要问题:● 您需要多大的相位裕度才能实现可靠的设计?● 如何补偿不稳定的电路?● 对于稳定性问题,有哪些直接替代式解决方案?您需要多大的相位裕度?运算放大器环路稳定性是通过相位裕度测量的,相位裕度是当输出闭环增益低于单位增益时输出信号相移相对于 360 度的差值。每个运算放大器(例如主极点)都固有一定的偏移,而额外的偏移则取决于应用和放大器周围的元件。不同的经验法则建
- 关键字:
德州仪器 模拟设计 运算放大器 运放
- 运放可以当比较器使用吗?比较器可以当运放使用吗?看完这篇文章或许你就知道答案了概述运算放大器和比较器无论外观或图纸符号都差不多,那么它们究竟有什么区别,在实际应用中如何区分?今天我来图文全面分析一下,夯实大家的基础,让工程师更上一层楼。先看一下它们的内部区别图:从内部图可以看出运算放大器和比较器的差别在于输出电路。运算放大器采用双晶体管推挽输出,而比较器只用一只晶体管,集电极连到输出端,发射极接地。比较器需要外接一个从正电源端到输出端的上拉电阻,该上拉电阻相当于晶体管的集电极电阻。运算放大器可用于线性放大
- 关键字:
运放 比较器
- 有工程师表示遇到过,用示波器采集运放的输出波形时,在某一输入电压处,原本很完美的正弦波出现了一点失真的情况,但不知是运放的原因还是其他外在原因。在了解工程师使用的运放类型之后,笔者得出结论:运放出现了输入的交越失真现象。大部分工程师可能对这个现象很陌生,甚至没有听过这个名词。本文将会系统且完整地介绍运放的交越失真:它产生的原因、运放的基本工艺架构对交越失真的影响,以及针对交越失真我们如何进行改善。运放基于工艺的分类运放基于工艺方面基本可以分为:Bipolar、JFET、CMOS三种架构类型,也有基于以上三
- 关键字:
ADI 运放 交越失真
- 意法半导体的 TSZ181H1车规算放大器和TSZ181H1 车规双运算放大器具有高准确度和稳定性,工作温度范围-40°C 至 175°C。最高工作温度的提升使其使用于恶劣的工作环境和长时间运行的工况。这两款运放的输入失调电压极低,在25°C 时典型值为 3.5μV;输入偏置电流在25°C 时典型值为 30pA。这两个参数的温漂极低,在 25°C 时,最大输入失调电压为 70μV,在整个温度范围内额定值为 100μV;在25°C 时,最大输入偏置电流额定值200pA,在整个温度范围内为 225pA。TSZ
- 关键字:
意法半导体 运放 运算放大器
- 意法半导体的 TSZ181H1车规算放大器和TSZ181H1 车规双运算放大器具有高准确度和稳定性,工作温度范围-40°C 至 175°C。最高工作温度的提升使其使用于恶劣的工作环境和长时间运行的工况。这两款运放的输入失调电压极低,在25°C 时典型值为 3.5μV;输入偏置电流在25°C 时典型值为 30pA。这两个参数的温漂极低,在 25°C 时,最大输入失调电压为 70μV,在整个温度范围内额定值为 100μV;在25°C 时,最大输入偏置电流额定值200pA,在整个温度范围内为 225pA。TSZ
- 关键字:
意法半导体 低温漂 运放 运算放大器
- 大家有没有留意,在模拟电路图上,无论是运算放大器、比较器、还是仪表放大器,工程师都会用同一个图案来表达(即下图1)。图1 :同时表达运算放大器、仪表放大器或比较器的电路图符号如果我们在芯片规格书內看到“三角形”器件,在选料时是否意味着可以把它应用于任何地方?理论上是可以的。您可以强制其中之一来实现其他功能,但系统性能不会达至最佳。因此,原厂一般会在规格书內列出了其器件的建议应用。通过本文,让我们看看它们之间的区别以及选型应用时需要注意的地方,以便我们尽可能围绕它们进行设计,同时也深入了解如何使用参数筛选来
- 关键字:
比较器 运放 仪表放大器
- 意法半导体TSV772 双路运算放大器 (运放) 兼备高精度和低功耗,更有尺寸很小的2.0mm x 2.0mm DFN8封装可选。TSV772属于意法半导体高性能 5V 运放系列,具有轨到轨输入和轨到轨输出,增益带宽积 (GBW) 20MHz,单位增益稳定,压摆率13V/µs ,输入噪声密度7nV/√Hz,4kV ESD 防护能力(HBM),是一款强大的全能型产品。最大输入失调电压200µV (25°C),可以准确测量低幅度输入信号。固有的高精度还可省用昂贵的外部精密电阻,并可避免在生产线上调整或校准电路
- 关键字:
意法半导体 运放
- 许多教材和参考指南将运算放大器(运放)定义为可以执行各种功能或操作(如放大、加法和减法)的专用集成电路(IC)。虽然我同意这个定义,但仍需注重芯片的输入引脚的电压。当输入电压相等时,运算放大器通常在线性范围内工作,而运算放大器正是在线性范围内准确地执行上述功能。然而,运算放大器只能改变一个条件来使输入电压相等,即输出电压。因此,运算放大器的输出通常以某种方式连接到输入,这种通常被称为电压反馈。在本文中,我将解释一个通用电压反馈运算放大器的基本操作,并请您参阅其他内容以了解更多信息。
- 关键字:
运放 IC
- 印制电路板(PCB)布线在高速电路中具有关键的作用,但它往往是电路设计过程的最后几个步骤之一。高速PCB布线有很多方面的问题,关于这个题目已有人撰写了大量的文献。 本文主要从实践的角度来探讨高速电路的布线问题。主要目的在于帮助新用户当设计高速电路PCB布线时对需要考虑的多种不同问题引起注意。另一个目的是为已经有一段时间没接触PCB布线的客户提供一种复习资料。由于版面有限,本文不可能详细地论述所有的问题,但是我们将讨论对提高电路性能、缩短设计时间、节省修改时间具有最大成效的关键部分。 虽然这里主要针
- 关键字:
运放 PCB
- 1979 年 1 月,《电子测试》发表了一篇文章称,一款单个测试电路可ldquo;执行对任何运算放大器全面检查所需的所有标准 DC 测试rdquo;。单个测试电
- 关键字:
电路测试 运放 DC
- 运放中“轨至轨”运行真正含义是什么?-有关单电源运放的一个热门讨论话题是:它们是否能够做轨至轨的输入或输出运行。单电源运放的供应商都声称自己的放大器有轨至轨输入能力,但芯片设计者必须做出某些折衷,才能实现这类性能。
- 关键字:
运放 轨至轨
- 运算放大器选型的注意事项-运算放大器是重要的模拟器件,在选择一个好的运算放大器的时候不禁需要了解设计的需求,还需要知道运算放大器的制造工艺以及一些具体的参数,本文将会介绍运算放大器选择的注意事项。
- 关键字:
运算放大器 运放
- 说实话,我最怕的就是解决运放使用的问题,最喜欢的也是用运放解决问题,一个孩子送了我一些进口啤酒让我给他讲讲如何规避运放使用误区,我喝了后就开始胡说了。
1、选运放要在双电源供电和单电源供电方式下做出迅速决定,原则上讲所有的运放都可以单电源供电,只不过是信号地的问题制约了你,特别是目前的低功耗CMOS运放使得很多人认为双电源供电的运放落伍,实际不然,如果在运放应用初级阶段没什么把握建议从正负双电源供电的运放开始玩,成功率相对高。
2、运放应用设计是在速度与功耗,噪音与功耗,精度与速度的权
- 关键字:
运放
- 运放OPA549放大电路电流源。OPA549是BB公司新推出的一种高电压大电流功率运算放大器。它能够提供极好的低电平信号、输出高电压、大电流,可驱动各种负载。该器件的主要特点:输出电流大,连续输出电流可达8A,...
- 关键字:
运放 OPA549 放大电路 电流源
运放介绍
运放
运放是运算放大器的简称。在实际电路中,通常结合反馈网络共同组成某种功能模块。由于早期应用于模拟计算机中,用以实现数学运算,故得名“运算放大器”,此名称一直延续至今。运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。随着半导体技术的发展,如今绝大部分的运放是以单片的形式存在。现今运放的种类繁多,广泛应用于几乎所有的行业当中。
中文名运放
[
查看详细 ]
关于我们 -
广告服务 -
企业会员服务 -
网站地图 -
联系我们 -
征稿 -
友情链接 -
手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司

京ICP备12027778号-2 北京市公安局备案:1101082052 京公网安备11010802012473