LTC5569双通道混频器性能良好 占板面积小
差分 IF 输出采用 120nH 上拉电感器 (Coilcraft 公司的 0603HP 系列,容限为 2%),还采用了一个阻抗比为 8:1 的 IF 输出变压器 (Mini-Circuits 公司的 TC8-1+)。这样的输出匹配为下一级提供了单端、50Ω 输出阻抗。
120nH 上拉电感器与 LTC5569 混频器的 IF 输出电容 (1.3pF 差分) 以及其他寄生电容并联,在 IF 输出端形成一个带宽很宽和单极点带通滤波器。每个 IF 输出引脚从 VCC 传导 28mA 的 DC 电流。总的 IF DC 电流为 56mA,在 TC8-1 IF 变压器的次级绕组和两个 120nH IF 输出电感器之间分配。两个上拉电感器和 TC8-1 变压器的中央抽头之间的节点需要良好的 AC 地。这个 AC 地由 10nF 旁路电容器提供。
LO 端口的匹配为 2281MHz 至 2475MHz 的低压侧 LO 注入而优化。
在 2496MHz 至 2690MHz 时,在 RF 输入范围内测得的性能为:
转换增益: 1.5dB ±0.3dB
OIP3: +26.0dBm 至 27.2dBm
在 195MHz 至 235MHz 时,在 IF 输出范围内测得了同样的性能。
在 MIMO RRU 设计中,尺寸很重要
在日益缩小的机箱中塞进很多接收器通道时,空间资源会很稀少。像 LTC5569 采用的那种 4mm x 4mm QFN 封装通常只能含有一个混频器。现在,LTC5569 却含有两个混频器,因此使放置密度提高了一倍。每个混频器的 RF 输入和公共的 LO 输入都有集成的、内置到该芯片中的平衡-不平衡变压器,以使这些端口不需要外部变压器。值得注意的是,典型的变压器常常占用与器件本身一样大的 PC 板面积。当采用两个或更多通道 (例如:4 个通道或 8 个通道) 时,占板面积的增加看似微不足道,实际上其快速增加有可能变得难以处理。
值得注意的是,内置在芯片上的 RF 平衡-不平衡变压器拥有独特的优势。因为作为半导体工艺的一部分,其金属走线的形状和厚度以及绝缘性都得到了很好的控制,因此这些变压器具有一致的阻抗特性,这是分立式、机械缠绕的变压器无法比拟的。因此,这些变压器以最小的偏差在不同系统间提供了可重复的响应特性。
LTC5569 的 RF 和 LO 输入端的 50Ω 阻抗匹配还有助于保持外部匹配要求最低。在 1.4GHz 到 3.3GHz 时,RF 和 LO 输入回程损耗高于 12dB。在这些端口将只需要 DC 隔离电容器。因为 LTC5569 能在低至 300MHz 的宽频率范围内工作,所以针对 700MHz LTE 和 800MHz GSM 频带,它的 RF 输入可以非常容易地匹配。
此外,LTC5569 的 2dB 高转换增益有助于消除对额外 IF 增益级的需要。该混频器提供卓越的 26.8dBm 输入 IP3 性能 (在 190MHz IF 时)。此外,该混频器具有卓越的阻塞信号处理能力。当 RF 输入端存在 5dBm 的带内阻塞信号时,其 NF 仅略有下降,从 11.7dB 降至 17dB (在 1.95GHz RF 时)。
低功率使热量管理可控
这么高的混频器性能几乎总是以牺牲功耗性能为代价实现的。LTC5569 的性能已经为更低的 3.3V 电源电压而进行了优化。采样这样的电源电压,每个混频器都以仅为 90mA 的 DC 电流工作,以实现每通道 300mW 的卓越功耗。如果考虑该器件提供的宽带性能、线性度和信号增益,那么 LTC5569 在混频器领域是非常出色的。
以这样的功耗,一个 8 通道 MIMO 接收器可以仅消耗 2.4W 功率。而可替代的每通道 1W 的混频器组成同样的接收器总共消耗 8W 功率,可见 LTC5569 的总功耗低得多。
当在印刷电路板上焊接该双通道混频器时,应该小心,以确保底面裸露的中央焊盘得到完全充分的焊接。这不仅对提供最高效的热量传导很重要,而且对实现最佳的 RF 信号接地也很有必要。这样能提高 RF 信噪比性能。
LTC5569 的封装具有非常低的 8°C/W 结点至管壳热阻 (ΘJC)。在两个通道都工作 (总功耗为 600mW)、电路板温度为 105°C 时,该器件的节温仅为 110°C,远低于 150°C 的绝对最大额定值。
结论
LTC5569 双通道混频器在非常宽的带宽范围内提供卓越的性能,同时具有紧凑的占板面积和非常低的功耗。该器件能应对新一代 LTE MIMO RRU 的高要求带来的挑战。
评论