新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 就备份应用而言 超级电容器可能是优于电池的选择

就备份应用而言 超级电容器可能是优于电池的选择

作者:Steve Knoth 时间:2012-04-13 来源:电子产品世界 收藏

  • 超级

本文引用地址:https://www.eepw.com.cn/article/131298.htm
  • 中等的能量密度
  • 高的功率密度
  • 低 ESR ── 即使在低温情况 (-20°C 与 25°C 相比,约增大 2 倍)

  • 超级的限制:

  • 每节的最高电压限制为 2.5V 或 2.75V
  • 在叠置应用中,必须补偿漏电流之差
  • 在高充电电压和高温时,寿命迅速缩短

  较早一代的两节超级充电器设计是为用于从 3.3V、3xAA 或锂离子 / 聚合物电池以低电流充电。然而,超级电容器技术的改进使市场得以扩大,因此出现了中到大电流应用机会,这类应用未必限定在消费类产品领域内。主要应用包括固态硬盘和海量存储备份系统、工业用 PDA 和手持式终端等便携式大电流电子设备、数据记录仪、仪表、医疗设备以及各种各样“濒临电源崩溃”的工业应用 (例如安全设备和警报系统)。其他消费类应用包括那些具大功率突发的应用,例如相机中的 LED 闪光灯、PCMCIA 卡和 GPRS / GSM 收发器、以及便携式设备中的硬盘驱动器 (HDD)。

  超级电容器的设计挑战

  超级电容器有很多优点,不过,当两个或更多电容器串联叠置使用时,就给设计师带来了各种问题,例如容量平衡、充电时电容过压损坏、过度吸取电流、以及大的解决方案占板面积。如果频繁需要大的突发峰值功率,那么也许需要较大的充电电流。此外,很多充电电源可能是电流受限的,例如,在电池缓冲器应用或在 USB / PCCARD 环境中。就空间受限和较大功率的便携式电子设备而言,能够解决这些问题是至关重要的。

  通过 IC 的反向传导一般会引起灾难性事件。诸如串联整流二极管等外部解决办法效率不是很高,因为压降很大。肖特基二极管的正向压降较小,因此可实现较高的系统效率,但是比常规二极管昂贵。另一方面,场效应管 (FET) 提供了低导通电阻和极低的损耗。内部的 FET 控制电源通路 (PowerPath™) 电路是解决这个问题的好办法,可避免可能导致损坏的结果。倘若输入突然降至低于输出,那么凭借电源通路控制,这类 IC 的控制器可以快速彻底地断开内部 FET,以防止发生从输出返回到输入电源的反向传导。

  容量平衡的串联超级电容器可确保每节电容上的电压都大约相等,而如果超级电容器中容量不平衡,就可能导致过压损坏。就小电流应用而言,具外部电路以及为每节电容器提供一个平衡电阻器的充电泵是解决这个问题的低成本方案,平衡电阻器的值主要取决于电容器的漏电流,原因如后面所述。为了限制平衡电阻器引起的漏电流对超级电容器能量存储的影响,设计师可以选择使用电流很低的有源平衡电路。容量失配的另一个来源是漏电流之差。电容器中的漏电流开始时相当大,然后随着时间推移衰减到较小的值。不过,如果串联电容器的漏电流之间是失配的,那么某些电容器再充电时可能会过压,除非设计师选择的平衡电阻器能在每节电容器上提供比电容器漏电流大得多的负载电流。不过,平衡电阻器引入了不想要的电流分量和永久性的放电电流,这给应用电路增加了负担。如果以大电流对失配的电容器充电,那么平衡电阻器也不对各节电容器提供过压保护。

  就小到中功率应用而言,解决超级电容器充电问题的另一种低成本 (但复杂的) 方法是使用一个限流开关加上一些分立式组件和一些外部无源组件。在这种方法中,限流开关提供充电电流和限制,而电压基准和比较器 IC 则提供电压箝位,最后,一个运算放大器 (吸收 / 提供) 和平衡电阻器实现超级电容器的容量平衡。然而,镇流电阻器的值越小,静态电流就越大,电池运行时间就越短;当然,其显而易见的好处是节省了成本。不过,这种方法实现起来非常笨重,而且性能不高。

  任何可高效地满足上述小到中电流超级电容器充电器 IC 设计限制的解决方案都会包括一个面向两节串联超级电容器和基于充电泵的充电器以及自动容量平衡和电压箝位。凌力尔特已经为这类应用开发出了一个简单但尖端的单片超级电容器充电器 IC,该 IC 不需要电感器,也不需要平衡电阻器,提供了反向隔离,并有多种工作模式,而且静态电流还很低。

超级电容器相关文章:超级电容器原理




关键词: 电容器 LTC3226

评论


相关推荐

技术专区

关闭