新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 利用信号调节器的抗混淆滤波器 实现混合信号、多模态传感器调节

利用信号调节器的抗混淆滤波器 实现混合信号、多模态传感器调节

作者:时间:2015-06-14来源:网络收藏

  引言

本文引用地址:http://www.eepw.com.cn/article/275683.htm

  一些信号调节器用于处理多个传感元件的输出。这种处理过程通常由多模态、混合信号调节器完成,它可以同时处理数个传感元件的输出。本文对这类信号调节器中抗混淆的工作情况进行详细分析。

  信号调节器基础知识

  传感元件(变送器)将有用的物理信号转换为电信号,例如:用于测量压力的压阻桥、用于检测超声波的压电传感器以及用于测量气体浓度的电化单元等。传感元件产生的电信号都很小,并且为非理想状态,例如:温度漂移和非线性传输函数等。

  传感器模拟前端(例如:德州仪器LMP91000)和传感器信号调节器(例如:德州仪器PGA400/450),用于把这些传感元件所产生的小信号放大到可用水平。PGA400/450包含完整的信号调节电路,以及可刺激传感元件、管理功率并与外部控制器连接的一些电路。另外,如PGA400等器件还能够对这些传感元件的非理想状态进行校准。

  多模态信号调节

  通常,为了实现信号调节或者更高级别的监控,我们需要对多个传感元件的输出进行测量。例如,处理某个典型压阻桥的输出,便要求同时对桥和温度传感器的输出进行测量。同样,处理热电偶的输出,要求同时对该热电偶和测量连接器温度的传感器的输出进行测量。测量连接器温度的目的是完成冷接点补偿。同一个信号调节器对多个传感元件进行处理的情况被称作“多模态信号调节”。

  混合信号信号调节

  传感器信号调节的另一个方面是发生信号调节的电域。德州仪器PGA309器件的电阻桥传感元件的信号调节发生在模拟域内。在如PGA400等器件中,信号调节同时发生在模拟和数字域内。后一种情况被称作“混合信号信号调节”。

  混合信号调节器的一个关键组成部分是模数转换器(ADC)。图1显示了一个多模态、混合信号传感器信号调节器的框图。该图表明,在信号达到智能补偿模块以前,两个传感元件始终都有独立的信号通路。之后,该模块组合这两个信号,产生经过处理之后的输出。

  

 

  图1多模态、混合信号传感器信号调节器

  尼奎斯特(Nyquist)准则

  混合信号传感器信号调节的一个重要方面是,将连续时间模拟域信号离散化为离散时间数字域信号。换句话说,混合信号调节器为采样系统。因此,著名的尼奎斯特采样准则适用于混合信号传感器信号调节。简单来说,该准则是指,采样频率必为信号带宽的两倍。就图1而言,我们假设每个信号通路中的放大器均对信号带宽进行限制,以满足尼奎斯特准则要求。换句话说,放大器放大信号的同时,进行必要的抗混淆(限制带宽),以满足尼奎斯特准则要求。

  图1还显示了信号通路中的数字。这些数字用于降低信号带宽,从而进一步帮助改善系统的信噪比(SNR)。

  多余的正弦波信号

  对于一些应用来说,可能需要降低图1所示电路的成本。图2显示了一个更具性价比的例子,其中,两个模拟信号通路共用一个放大器和一个ADC.上述两个电路中的信号通路都有带外正弦波分量,其会进入传感元件(例如,由于电磁干扰),或者进入信号通路本身(例如,由于相邻电路的干扰)。由于图2所示公共信号通路的存在,数字滤波器可能在消除带外或者多余正弦波分量方面不起作用。本小节将对该问题进行分析。

  

 

  图2共用一个放大器和一个ADC的模拟信号通路

  就了方便分析,我们假设图1和图2的条件相同:

  l ADC采样率:10kHz

  l满足尼奎斯特准则的放大器带宽:5kHz

  l信号带或者数字滤波器带宽:2.5kHz

  l传感元件1通路的3kHz多余正弦波分量

  在图1所示电路中,多余3kHz信号被数字滤波器有效衰减。这是因为3kHz信号未进入基带。也就是说,3kHz将出现在3kHz下,甚至是在数字域内。

  但是,如果相同的5kHz放大器用于图2所示电路,并且两个传感元件的信号被依次采样,则数字滤波器在衰减多余3kHz信号方面不起作用。这是因为,传感元件1信号的有效采样频率仅为5kHz,尽管ADC采样率为10kHz.因此,3kHz会进入基带(即表现为带内信号),从而让数字滤波器在消除多余信号方面不起作用。

  请注意,为了防止出现多余信号失真,并满足尼奎斯特准则要求,放大器带宽必须降至2.5kHz.在这种情况下,便不再需要一个2.5kHz数字滤波器;数字化信号带宽被模拟放大器限制在2.5kHz.

  多余宽带白噪声

  图1和图2所示信号通路会产生多余宽带白噪声。为了研究和清楚地理解这个问题,我们假设信号通路没有任何多余正弦波分量。同时,我们还假设,相比量化噪声,信号通路的白噪声是主要噪声源(这类信号通路的常见情况)。

  白噪声抗混淆滤波器:案例1

  由于存在图1所示独立信号通路,每个5kHz放大器都起到一个抗混淆滤波器的作用,从而将各个信号的白噪声带宽限制在5kHz.数字滤波器进一步将这种带宽降至2.5kHz,从而实现某个信白噪比。

  由于图2所示两个模拟信号通路共用一个5kHz放大器,因此传感元件1的有效采样频率再一次为5kHz(假设对两个传感元件输出进行依次采样)。在这种情况下,2.5kHz到5kHz的所有模拟域噪声均进入0kHz到2.5kHz范围(有用频带)。但是,该频率范围内的均方根(RMS)噪声不受影响!换句话说,该电路的SNR与图1所示电路一样。

  

 

  仿真模型

  图3显示了一个MATLAB?/Simulink?模型,其用于分析信号通路构架对多余宽带白噪声的影响。该模型同

模拟信号相关文章:什么是模拟信号


滤波器相关文章:滤波器原理


滤波器相关文章:滤波器原理


传感器相关文章:传感器工作原理


模数转换器相关文章:模数转换器工作原理


电源滤波器相关文章:电源滤波器原理


风速传感器相关文章:风速传感器原理
数字滤波器相关文章:数字滤波器原理
热电偶相关文章:热电偶原理

上一页 1 2 下一页

关键词: 滤波器 传感器

评论


相关推荐

技术专区

关闭