新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 降压转换器应对大电流输出挑战

降压转换器应对大电流输出挑战

作者:时间:2012-08-24来源:网络收藏

  很多排列密集和复杂的电路板设计(例如:采用多个ASIC的嵌入式系统或双核单板计算机)都采用隔离砖式转换器,将48V配电(背板)电压转换为稳定的3.3V系统总线电压。这样做有几个原因:仅用3.3V总线,若选择合适的DC/DC负载点(POL)转换器,将3.3V电压转换为较低的电压轨(2.5V、1.2V、1.0V、0.9V)给DDR存储器、FPGA内核或收发器等供电,可以改善电路板(所有电路)的功耗;仅用一种总线电压(3.3V)运行以简化电路设计,因为无需5V或12V内务处理电源,这种电源常常用来偏置较大功率的DC/DC POL稳压器;将48V和24V电压转换至3.3V时,隔离砖式转换器已经提高了工作效率,而且输出功率水平也越来越高。

  当3.3V总线下游的负载需要超过5A而达到12A的电流时,挑战便出现了。尽管这种需求似乎很少,但是FPGA、处理器和ASIC技术领域的进步已经使设计人员能在更小的电路板中使用更多这类器件来提高性能,而且越来越多的应用有了10A的负载要求。

  最近有一个客户要求,用3.3V输入总线给1V电源轨供电,由该电源轨提供30A电流。但是,传统的带N沟道MOSFET的低输入电压大功率开关模式DC/DC转换器依靠二次稳压器(内务处理)电路来提供高于总线的VIN电压,用于MOSFET栅极驱动。这增大了布局的复杂性、尺寸和成本。当没有5V电压可用时,用3.3V输入总线给负载提供的效率非常地低。由此引起的过大功耗会提高稳压器和周围组件的结温。其结果只有一个,就是减弱系统在寿命期内的可靠性。

  解救办法

  LTM4611是一款扁平的微型模块(μModule)降压型开关模式DC/DC转换器,它采用紧凑的15mm×15mm×4.32mm LGA表贴封装。开关控制器、MOSFET、电感器和支持的元器件集成在封装内,因而设计可简化为仅选用少量的外部元器件。LTM4611在1.5V至5.5V(最大绝对值为6V)的输入电压范围内工作,从而适用于各种电源架构,尤其是数据存储和RAID(独立磁盘冗余阵列)系统、ATCA(先进电信计算架构)和网络卡应用的电源。在这类电源架构中,一个或多个常见的总线电压是5V、3.3V、2.8V和/或2.5V.

  由于配电损耗(电压降)和相对较高的总线电流相关,总线电压低于2.5V的情况并不常见。尽管如此,在那些在短暂或持续的电气事件引起输入总线电压下降时,负载电压又恰好需要精确调节的应用中,LTM4611可依靠1.5V输入为其负载提供满功率的能力却仍然特别有利。系统总线上的瞬态事件一般会因电机、换能器、除纤颤器的运作或微控制器工作速率的提升而出现。系统分布式总线上的故障事件有可能使总线电压下降,但仍然高于1.5V.由于LTM4611在输入低至1.5V的情况下仍可提供满功率,因而可考虑将其用于任务关键型的医疗和工业仪器(这些仪器对正常运行时间及总线电压下降的穿越能力具有最高标准)。甚至在电源濒临崩溃(例如那些由公用事业智能电表负责监测的系统电源突然意外缺失)的过程中,LTM4611亦能为负载提供精确调节的电源。这种情况下非常希望有后备电池或超级电容器提供衰减电压,尽可能长时间地供电。

  LTM4611能在低至1.5V电压下工作的另一个优势是,随着今天电源系统中电压轨数量增多,印刷电路板(PCB)中铜层数目也在增多,从而有效地向负载发送(分配)功率。考虑一个假设的例子:如果不增加PCB中的铜层数目,那么将很难将分布式3.3V总线电压发送给3.3V至1.5V和3.3V至1.2V DC/DC转换器。现在可采用另一种方式:用一个LTM4611将3.3V总线电压转换为分布式1.5V铜层电压,再采用另一个LTM4611将该1.5V铜层电压高效地转换为POL的1.2V电压。结果主板上总体解决方案的尺寸相当具有吸引力,同时还无需将3.3V总线电压发送到PCB的所有部分。在PCB制造过程中能尽量减少铜层数目则有望节省成本和材料,并有利于PCB的批量生产和可靠性的提高。

  自发生偏置电源

  LTM4611无需采用辅助偏置电源为其内部控制IC或MOSFET驱动电路供电,它可依靠输入电源产生其自己的低偏置电源。该内部偏置电源使得LTM4611能够采用低至1.5V的输入电压工作,从而可在所有线路电压条件下给其功率MOSFET提供强大的栅极驱动信号,同时,也使其在使用5V、3.3V或更低总线电压的系统中能够实现高效率。LTM4611背后是一种拓扑,该拓扑负责对其输入电压进行降压,以向其输出端提供低至0.8V的电压和高达15A的连续电流。通过正确选择输入电源(取决于电源的动态特性和瞬态负载响应)和局部旁路电容,可在15A负载条件下实现一个低于0.3V的输入至输出电压降。LTM4611采用一种固定频率峰值电流模式控制方案,默认的工作频率为500kHz.也可选用电阻器引脚搭接LTM4611的PLLFLTR/Fset引脚的方法,将开关频率调整至介于330kHz和780kHz之间,或者通过其MODE_PLLIN引脚将开关频率同步到360kHz至710kHz的时钟信号。

  多个电源均流以提供大输出电流

  LTM4611支持4个模块的均流,以实现输出电流高达60A的解决方案。甚至可并联更多的模块以提供更高的输出电流。电流模式控制使得模块的均流格外可靠和易于实现,并可确保启动、瞬态和稳态操作情况下模块之间的均流。

  与此不同,许多电压模式模块则是通过采用主从配置或"压降均分"(也被称为"负载线路均分")来实现均流。在启动和瞬态负载条件下,主从配置容易遭受讨厌的过流跳变,而压降均分则会导致负载调节指标下降,且在瞬态负载阶跃期间几乎无法保证优良的模块至模块电流匹配。

  从无负载到满负载时,LTM4611一般能提供优于0.2%的负载调节,而其在-40℃至125℃的整个内部模块温度范围内的最大值为0.5%.

  易于实现POL应用

  图1所示方框图显示,LTM4611在1.8V至5.5V的输入范围内工作,以高达15A的电流提供1.5V输出。输出电压可用VFB和GND之间的单电阻器设定。控制环路驱动功率MOSFET和输出电压,以便VFB等于较低的0.8V或TRACK/SS引脚上的电压。当该模块的RUN引脚超过1.22V(±10%)时,TRACK/SS引脚上的软启动电容器CSS设定LTM4611输出的启动速率。CSS用于确保单调的输出电压波形启动,和支持平滑上电进入预偏置输出电压状态。另一个电源轨的电阻分压器可以加到TRACK/SS引脚,以设定LTM4611输出轨对基准电源轨一致或成比例的跟踪。当为那些在系统上电及断电期间具有严格的电源轨跟踪要求的数字设备供电时,这项特性非常便利。

  降压转换器应对大电流输出挑战

  图1 LTM4611的简化方框图和典型应用。

  远程采样实现准确的POL调节

  常规上,低电压FPGA、ASIC和微处理器都要求在POL终端(通常是Vdd和Dgnd引脚)上提供精确调节到标称VOUT ±3%(或更好)的极其准确的电压。在输出电压低于3.7V时,这是最难做到的。为了满足这种调节要求,LTM4611提供了一个单位增益缓冲器,以对负载终端处的输出电压进行远程检测。

  PCB中VOUT和GND铜层之间的压降不可避免,这是由物理上存在于模块和负载之间的电阻性分配损耗所造成的。如图1所示,POL两端(VOSNS+减去VOSNS-)的差分反馈信号在DIFF_VOUT端相对于该模块的局部地SGND被重构,从而使控制环路能够补偿在模块输出引脚与POL器件之间的供电通路中产生的任何压降。

  LTM4611包括一个输出电压"电源良好"(PGOOD)指示引脚,当输出电压在VOUT标称值的±7.5%以内时,该引脚提供一个逻辑高电平开漏信号;否则,PGOOD被拉至逻辑低电平。LTM4611提供折返电流限制,以保护自身和上游电源免受其输出端故障的影响。LTM4611还包括一种输出过压保护功能:当输出电压超过标称值的107.5%时,内部低压端MOSFET导通,直到过压情况清除为止。

  你的系统有多环保?

  DC/DC电源的转换效率和热管理在今日与往时同样重要。LTM4611采用耐热增强型LGA(焊盘网格阵列)封装,以小焊盘布局(仅15mm×15mm)和小物理体积(仅4.32mm高,占用1cm3的空间)提供了极具吸引力的高效率。图2显示了LTM4611在各种输入和输出电压组合情况下的效率。除了高效率之外,在给定的输入电压和输出负载条件下,LTM4611的功耗曲线相对平坦。这使LTM4611的热设计和在后续产品中的重复使用变得简单易行,即使在电源轨电压由于IC芯片不断缩小而日益下降的情况下也不例外。

降压转换器应对大电流输出挑战

  图2:在不同的输入和输出电压情况下,LTM4611的效率随负载电流的变化。

  就越来越多的应用而言,降低轻载时的功耗与降低重载时的

超级电容器相关文章:超级电容器原理



上一页 1 2 下一页

评论


相关推荐

技术专区

关闭