新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 基于单片机控制的超声波测距报警系统

基于单片机控制的超声波测距报警系统

作者:时间:2012-05-24来源:网络收藏

0 引言

超声波具有定向性好、能量集中、在传输过程中衰减较小、反射能力较强等优点,超声波传感器可广泛应用于非接触式检测方法,因而采用仿真技术进行

目前国内的专用集成电路都是只有厘米级的测量准确度。通过分析误差产生的原因,提高测量时间差到微秒级,以及用LM92 温度传感器进行声波传播速度的补偿后,设计的高准确度超声波测距仪能达到毫米级的测量准确度。

1 超声波测距基本原理

如图1 所示,使单片机可接收超声波模块输出的距离信号,并对其进行合理的处理后,在显示模块上实时显示超声波模块与障碍物的距离。

基于单片机控制的超声波测距报警系统

图1 系统连接示意

单片机发出40 kHz 的方波信号,经放大后通过超声波发射器输出;超声波接收器将接收到的超声波信号经放大器放大,用锁相环电路进行检波处理后,启动单片机中断程序,测得时间为t.

再通过软件编程进行判别、计算,得出所测距离值并由LED 数码管显示,其原理框图如图2。

基于单片机控制的超声波测距报警系统

图2 超声波测距仪原理框图

发射器发出的超声波以速度v 在空气中传播,在到达被测物体时被反射返回,由接收器接收,其往返时间为t.由公式:测出的距离 L (m) = 常温下的声速340 (m/s)× 感应时间t (s) / 2,算出被测物体的距离。由于超声波也是一种声波,其声速v 与温度有关,如果温度变化不大,则可认为声速是基本不变的。如果测距准确度要求很高,则应通过温度补偿的方法加以修正。

2 系统硬件设计

2.1 超声波测距原理

单片机在 T0 时刻发射方波,同时启动定时器开始计时,当收到回波后,产生一个负跳变到单片机中端口,单片机响应中断程序,定时器停止计数。计算时间差,即可得到超声波在介质中传播的时间t ,由此便可计算出距离。其时序图如图3 所示。

基于单片机控制的超声波测距报警系统

图3 超声波时序图

2.2 硬件电路

硬件电路的设计主要包括单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分。单片机采用STC89C51 或其兼容系列。采用12 MHz 高准确度的晶振,以获得较稳定时钟频率,减小测量误差。单片机用P2.4 端口输出超声波换能器所需的40 kHz 的方波信号,利用外中断0 口监测超声波接收电路输出的返回信号。显示电路采用简单实用的4 位共阳LED 数码管,段码用程序驱动,位码用PNP 三极管驱动。

2.3 各主要模块的硬件

STC89C51 芯片引脚与封装如图4 所示。

基于单片机控制的超声波测距报警系统

图4 STC89C51 引脚

引脚功能说明:

(1)VCC:电源电压。

(2)GND:接地。

(3)RST:复位输入。当振荡器复位器件时,要保持RST 脚两个机器周期的高电平时间。

(4)/EA/VPP:当/EA 保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。

(5)XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。

(6)XTAL2:来自反向振荡器的输出。

(7)P0 口:P0 口为一个8 位漏级开路双向I/O 口,也即地址/ 数据总线复用口。作为输出口用时,每脚可吸收8TTL 门电流。

(8)P1 口:P1 口是一个内部提供上拉电阻的8 位双向I/O 口,P1 口缓冲器能吸收或输出4TTL门电流。

(9)P2 口:P2 口为一个内部上拉电阻的8 位双向I/O 口,P2 口缓冲器可吸收或输出4 个TTL门电流,当P2 口被写"1"时,其管脚被内部上拉电阻拉高,且作为输入。

(10)P3 口:P3 口管脚是8 个带内部上拉电阻的双向I/O 口,可吸收或输出4 个TTL 门电流。


上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭