新闻中心

EEPW首页 > 手机与无线通信 > 设计应用 > 如何在时域、频域和数字域中调试5G NR多通道系统?

如何在时域、频域和数字域中调试5G NR多通道系统?

作者:时间:2022-10-28来源:泰克收藏

对工程师而言,使用一台仪器就能跨越多域(时域、频域及调制域)查看信号,并同时分析多个不同类型的测量,这在复杂的系统测试中非常实用,因为在系统中数字信号、模拟信号和RF信号彼此交互。

本文引用地址:http://www.eepw.com.cn/article/202210/439745.htm


尽管系统开发时已经做了大量的工作,但科学家和工程师仍面临着许多挑战,包括:


●   eMBB (增强移动宽带)收发机实现问题,包括高效实现应用的信道编码(LDPC和Polar码)、收发机设计的能效、大尺寸FFT的OFDM和DFT扩展OFDM信号强大的同步方法。

●   考察V2X和遥控通信系统使用的超可靠URLLC (超可靠低时延通信)传输方法,包括高效通信信道编码、可靠的接入无线资源以及收发机设计。

●   考虑收发机在毫米波范围通信中实现的具体问题

●   massiveMIMO结构和算法

●   mMTC (海量机器型通信,如物联网)使用的能效传输、同步和多种接入方法

●   mMTC调制和编码

●   感知无线电在5G中的应用


关联模拟信号、数字信号和RF信号的根本原因


5G系统的开发过程离不开数字信号、模拟信号和RF信号。如今,RF功放同步、增益和定时特点测试必须与现代控制接口结合在一起,如采用MIPI的RF前端控制接口 (RFFE)。


能够跨多个域分析信号对查找干扰、毛刺、杂散信号、跌落及其他错误至关重要。


在本期内容中,我们将为大家实测演示宽带RF放大器典型的5G系统调试和验证场景(建议大家先看视频,再看文字内容~)


测试设置


为了展示使用多域示波器分析RF放大器性能的优势,我们使用MSO6B系列示波器作为我们的采集硬件。


4.jpg

图1. MSO6B示波器安装了SignalVu-PC软件


我们的被测器件是Mini Circuits的GVA-123+,这是一种小型RF放大器,但它演示了用户设备和基站应用典型的测量问题。


5.jpg

图2. 测试设备,包括示波器、信号发生器、耦合器、电源和DUT


我们配置AWG70000B任意波形发生器作为我们的信号源,在3.5GHz中心频率生成单个5G NR载波,带宽为100MHz。它是一个上行信号,30kHz副载波间隔(SCS),256-QAM,11.5dB OFDM PAPR。


AWG调节为250mV ~ 500mV峰峰值信号,约为–11 ~ –17dBm合成平均功率。


我们使用耦合器(ZDC-10-0123),在示波器通道1上捕获输入信号。吉时利源测量单元(SMU)为被测器件供电。


我们还在示波器通道6上增加了一只电流探头,测量放大器吸收的电流。


在MSO6B示波器上,我们运行SignalVu VSA软件,装有5G NR选配插件,我们把它配置成分析示波器通道1捕获的信号。


测量实例


作为实例,我们将看到放大器获得良好的读数,在RF输入上开始触发。


6.jpg

图3. 在这个测量中,星座图中显示的EVM与预期相符


然后我们在引入干扰时会突然看到变化,我们捕捉到高失真时点,这是什么引起的呢?


7.jpg

图4. 在这个测量中,EVM高于预期


在上面两个截屏中可以看到,星座图中的5G EVM在好和坏之间脉冲波动。我们可以看下功率相对于时间画面,也可以看到功率有时会跌落。


因此,我们看到所有RF域指标都显示出了问题,我们想进一步了解根本原因。


您怀疑这与电源有关,如果使用的是传统VSA,您会不知所措,只能不断地猜测。而MSO6B不同,它可以同时查看模拟信号、数字信号和RF信号,所以我们可以关联到根本原因。


如果我们看一下通道6上测量信号的电流探头和通道5上的RF输出,我们可以看到电流在周期性下跌。


8.jpg

图5. 在这个采集中,电源传送48mA (通道6, 蓝色),功放的输出(通道5, 橙色)是标称值


9.jpg

图6. 在这个采集中,电源传送22mA (通道6, 蓝色),功放的输出(通道5, 橙色)已经下跌


所以我们改变视角,在时域中触发电流,而不是在频域中触发RF脉冲。


为此,我们将把触发源变成通道6上的电流探头,因为我们知道正确操作发生在47mA,所以我们把触发点设置在43mA,在下降时捕捉信号。我们设置成触发电流边沿,而不是脉冲。


10.jpg

图7. 触发设置成捕获电流下降,以统一采集低电流情况


现在我们通过示波器关联到RF性能下跌的原因,在返回SignalVu时,我们现在可以捕捉电流开始下跌的时点。


11.jpg

图8. 在触发低电流情况时,我们在星座图中一直看到高EVM


这里,我们看到电流与示波器屏幕上的RF性能的跌落完美相关。这足可以确认,我们已经触发电流下跌,不再会有闪烁的星座图或EVM画面,我们可以更好地看到实际问题。您可以看到,我们的EVM一直很差,因为我们已经触发了故障时点。


现在我们看一下在电流落在规范内时是否触发,看一下RF测量会发生什么情况。为此,我们只需把触发方向变成上升,现在可以捕获电流落在规范内的时点。在示波器应用中,我们的RF能量如预期那样恢复,看一下SignalVu VSA应用,捕获的每个5G信号都满足规范。


12.png

图9. 只需按几下按钮,就可以把触发设置成捕获电流提高,在电流恢复正常时一直采集信号


13.jpg

图10. 触发电流的上升沿,确定电流恢复正常的测量时点


14.jpg

图11. 在以正常电流获得测量时,EVM一直落在规范内


在电流不符合规范时,我们的RF输出和EVM也落在规范外。所以我们把RF性能下跌的原因与电源电流的周期下跌关联起来了。


在这个简单的演示中,我们使用SMU步进的提高和降低电流。作为5G设计人员,大家可能知道电流变化更多的底层原因,比如DPD算法或系数加载错误。


通过基于示波器的解决方案,我们还可以测量和计算精确的放大器功率系数指标,比如功放的功效(PAE)。


这个器件没有数字总线,如果有,我们可以触发数字总线,把问题与数字总线行为关联起来。


解决方案摘要


同步多通道频谱分析和时域波形加快了5G调试速度。


5G系统的开发过程离不开数字信号、模拟信号和RF信号。能够跨多个域分析信号对查找干扰、毛刺、杂散信号、跌落及其他错误至关重要。


在4系、5系和6系MSO示波器中,每个输入背后都是定制ASIC内部的12位ADC。每个ADC沿着两条路径发送高速数字化数据。这种方法可以独立控制时域和频域采集,可以同时优化给定信号的波形视图和频谱视图。这种独特的频谱视图功能可以在时域、RF和数字域中实现同步测量,支持最多8条通道。


MSO6B支持最高10GHz的频率范围以及最高2GHz的分析带宽,能够直接测量Sub 6 (FR1) 5G信号。您可以至我们的官网了解更多相关信息:


●   5G测试

●   MSO6B混合信号示波器

●   频谱分析仪软件



关键词: 泰克 5G

评论


相关推荐

技术专区

关闭