新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 解析四大动力电池技术:锂电池和铝空气电池等

解析四大动力电池技术:锂电池和铝空气电池等

作者:时间:2017-10-20来源:网络收藏

  一、氢燃料电池产业

本文引用地址:http://www.eepw.com.cn/article/201710/366458.htm

  在氢燃料电池产业链中,上游是氢气的制取、运输和储藏,在加氢站对氢燃料电池系统进行氢气的加注;中游是电堆等关键零部件的生产,将电堆和配件两大部分进行集成,形成氢燃料电池系统;在下游应用层面,主要有交通运输、便携式电源和固定式电源三个方向。

  

  二、动力电池优劣势比较

  目前在交通运输用动力源方面,主要有四种技术路线:锂离子电池、氢燃料电池、超级电容和。其中锂离子电池、超级电容和氢燃料电池得到广泛的应用,而尚处于实验室研究阶段。能源补给方面,锂离子电池、超级电容适用于纯电动汽车,但是需要外部充电,而氢燃料电池汽车则需要外部氢气加注,则需要补充铝板和电解液。

  四种技术路线优劣势比较

  

  1、氢燃料电池特性

  (1)良好的环境相容性

  氢燃料电池提供的是高效洁净能源,其排放的水不仅量少,而且非常干净,因而不存在水污染问题。同时由于燃料电池不像发动机那样需要将热能转换为机械能,而是直接把化学能转化为电能和热能,能量转换效率高,噪音小。

  (2)良好的操作性能

  氢燃料电池发电,不需要复杂庞大的配置设备,电池堆可以模块化组装。例如,一个 4.5MW 的发电装置可以 有 460 个电池组件组成,其发电厂占地面积比火力发电厂小得多。氢燃料电池适合作为分散发电装置。另外与火力、水力和核能发电相比,氢燃料电池电厂的建设周期短,扩建容易,可以完全根据实际需要分期建设。同时氢燃料电池的运行质量高,应对负载的快速变动(如高峰负载)特性优良,在数秒内就可以从低功率变换到额定功率。

  (3)高效的输出性能

  氢燃料电池工作时将燃料储存的能量转化为电和热,转换电能的效率在 40%以上,而汽轮机只有 1/3 可以转化为电。

  (4)灵活的结构特性

  氢燃料电池组装非常灵活,功率大小容易调配,与传统发动机相比,由于氢燃料电池良好的模块性可以在不增加基础设施投资的基础上,通过增减单电池的片数即可轻松实现输出功率和电压的调整,所以建设起来也很容易,而且比较容易实现对电网的调控。燃料电池的这一特点提高了系统稳定性。

  (5)氢的来源广泛

  氢作为二次能源,可通过多种方式获得,如煤制氢、天然气重整制氢、电解水制氢等等。在化石能源被耗尽时,氢将成为世界上的主要燃料及能量。而采用太阳能电解水制氢,过程中没有碳排放,可以认为氢是终极能源。

  (6)存在的瓶颈

  从现阶段发展来看,氢燃料电池的普及遇到一定的瓶颈,如电池本身成本较高,基础设施尚未普及等。

  2、锂离子电池特性

  (1)电压平台

  锂离子电池由于采用的正负极材料不同,其单体电池的工作电压范围为3.7~4V,其中应用规模较大的磷酸铁锂单体电池工作电压为 3.2V,是镍氢电池的 3 倍、铅酸电池的 2 倍。

  (2)比能量

  当前乘用车锂离子动力电池的能量密度接近 200Wh/kg,预计 2020 年达到300Wh/kg。

  (3)电池寿命短

  由于电化学材料特性的制约,锂离子电池的循环次数没有取得突破,以磷酸铁锂为例,单体电池循环次数可以达到 2000 次以上,成组后仅为 1000 次以上。无法满足公交运行 8 年期限的要求。

  (4)对环境影响较大

  锂离子电池采用轻金属锂,尽管不含汞、铅等有害重金属,被认为是绿色电池,对环境污染较小。但实际上由于其正负极材料、电解液包含镍、锰等金属物,美国已经将锂离子电池归类为一种包含易燃、浸出毒性、腐蚀性、反应性等有毒有害性的电池,是目前各类电池中包含毒性物质最多的电池,并且因为其回收再利用的工艺较为复杂导致成本较高,因此目前的回收再利用率不高,废弃的电池对环境影响较大。

  (5)成本依然较高

  锂离子电池初期购置成本高,以目前公交车用动力电池主流产品磷酸铁为例,价格大约在 2500 元/kWh,随着电动汽车的普及,有望在 2020 年降低到 1000 元/kWh以下。由于单体电池成组后循环次数的制约,公交车通常在 3 年左右即需要更换电池,运营单位成本压力较大。

  (6)对电网影响较大

  首先大规模应用纯电动汽车,由于充电需求较大,充电设备对电网的谐波干扰将会凸显,影响电网的供电质量;其次,在快充时,由于是大倍率充电,因此充电功率较高(乘用车在 50kW、客车在 150~250kW 左右),对电网的负荷冲击较大。

  因此,基于目前锂离子电池的技术水平来看,其电动汽车方面的应用主要在行驶里程小于 200km 的短途纯电动汽车中。

  3、超级电容器特性

  (1)极高的充放电倍率

  超级电容具备较高的功率密度,可在短时间内放出几百到几千安培的电流,充电速度快,可在几十秒到几分钟内完成充电过程。超级电容公交车和有轨电车就是利用此特性在短时间内完成充电,驱动车辆前进。

  (2)循环寿命长

  超级电容的充放电过程损耗极小,因此在理论上其循环寿命为无穷,实际可达 100000 次以上,比电池高 10 ~100 倍。

  (3)低温性能较好

  超级电容充放电过程中发生的电荷转移大部分都在电极活性物质表面进行,所以容量随温度衰减非常小,而通常锂离子电池在低温下容量衰减幅度甚至高达70%。

  (4)能量密度太低

  超级电容应用的瓶颈之一就是能量密度太低,仅为锂离子电池的 1/20 左右,约 10Wh/kg。因此不能作为电动汽车主电源,大多作为辅助电源,主要用于快速启动装置和制动能量回收装置。

  4、铝空气电池特性

  (1)材料成本低、能量密度高

  铝空气电池的负极活性材料是含量丰富的金属铝,价格便宜,环保,正极活性物质是空气中的氧气,正极容量可视无限大。因此铝空气电池具有质量轻,体积小,使用寿命长的优势。

  (2)关键技术未取得突破,尚未走出实验室

  空气电极极化和氢氧化铝沉降等问题是影响金属空气电池走向市场化的重要障碍,铝空气电池性能的提高遇到很大的瓶颈。目前尚处于实验室阶段,距离商业化推广还有一段不小的距离。



评论


相关推荐

技术专区

关闭