新闻中心

EEPW首页 > 测试测量 > 设计应用 > 示波器死区时间和波形捕获率对测量结果的影响

示波器死区时间和波形捕获率对测量结果的影响

作者:时间:2011-02-09来源:网络收藏

发展到今天,传统的模拟已经渐渐淡出了人们的视野,数字几乎已经取代模拟成为硬件工程师手中电路调试的最常用的一种仪器设备了。你是否觉得示波器提供给了被测信号的所有信息呢?事实上,示波器在大部分时间都处在一个无法检测信号的无信号状态,通常把这段丢失信号的时间称为

本文引用地址:http://www.eepw.com.cn/article/195118.htm

什么是

要想了解的来源,需要先对数字示波器的结构有一个基本的了解。数字示波器的典型组成框图如图1、图2所示。

示波器死区时间和波形捕获率对测量的影响(电子工程专辑)
图1:传统数字示波器组成框图。

示波器死区时间和波形捕获率对测量的影响(电子工程专辑)
图2:RS公司RTO系列示波器组成框图。

被测信号通过输入通道进入示波器,并通过垂直系统中的衰减器和放大器加以调节。模数转换器(ADC)按照固定的时间间隔对信号进行采样,并将各个信号振幅转换成离散的数字值,称为“样本点”。采集模块随后则执行处理功能,例如样本抽取,默认一般都为采样模式。输出数据作为样本点(samples)存储在采集存储器中。存储的样点数目用户可以通过记录长度进行设置。

根据用户的需求,还可以对这些样本点进一步后处理。后处理任务包括算数功能(例如求平均值)、数学运算(例如FIR滤波)、自动(例如上升时间或下降时间)以及分析功能(例如直方图或模板测试)。其他后处理例如还包括协议解码、抖动分析和矢量信号分析等等。

对于数字示波器而言,基本上对样本执行的处理步骤没有任何限制。这些后处理功能或者使用软件通过该仪器的主处理程序执行,或者使用专用的ASIC或FPGA硬件执行,具体取决于示波器的结构。最终结果随后通过示波器的显示屏呈现给用户。

从图1和图2中可以看到RS RTO系列示波器和传统数字示波器的在信号处理过程上的区别,它使用了专门独立开发的ASIC芯片RTC和FPGA来实现样本的后处理,如通道校准、样本抽取、数字滤波、math、直方图、模板测试以及FFT、自动、协议解码等等,大大降低了主处理器的工作负荷,同时在RTO芯片中用数字触发取代了模拟触发电路,消除了模拟触发电路带来的触发抖动,传统的中高端示波器为了减小这部分抖动,需要大量的DSP后处理。硬件结构上的创新,极大的缩短了RTO示波器样本后处理所耗费的时间。

示波器从信号采样捕获到波形样本的处理显示这一周期,称为捕获周期,在前一个捕获周期结束后,示波器才能够捕获下一个新波形。所以,数字示波器将捕获周期的大部分时间都用于对波形样本的后处理上,在这一处理过程中,示波器就处于无信号状态,无法继续监测被测信号。从根本上来说,死区时间就是数字示波器对波形样本后处理所需要的时间。

死区时间和捕获周期及波形捕获率关系

图3显示了一个波形捕获周期的示意图。捕获周期由有效捕获时间和死区时间周期组成。在有效捕获时间内,示波器按照用户设定波形样本数进行捕获,并将其写入采集存储器中。捕获的死区时间包含固定时间和可变时间两部分。固定时间具体取决于各个仪器的架构本身。可变时间则取决于处理所需的时间,它与设定的捕获样本数(记录长度)、水平刻度、采样率以及所选后处理功能(例如,插值、数学函数、测量和分析)多少都有直接关系。死区时间和捕获周期之比死区时间比也是示波器的一个重要特性,捕获周期的倒数就是波形捕获率。


图3:数字示波器的一个捕获周期。

例如,如果有效捕获时间是100ns(样本数为1k,采样率为10G),而死区时间是10ms,那么整个捕获周期所用的时间是10.0001ms。由此得到的死区时间比是99.999%,而波形捕获率是每秒不到100个波形。目前市场上大部分示波器在常规测量模式下面的波形捕获率都在几百次的量级,RS公司最新的RTO系列示波器在同等条件下可以实现最高1,000,000次的波形捕获率,死区时间比可以降低到90%一下,远远要高出其他示波器。有些带宽≤1G的示波器在其最高采样率下,可以达到50,000次/秒的波形捕获率,其死区时间比也高达99.5%以上。

接地电阻相关文章:接地电阻测试方法



上一页 1 2 下一页

评论


相关推荐

技术专区

关闭