关 闭

新闻中心

EEPW首页 > 工控自动化 > 设计应用 > 基于CAN总线的悬浮控制器监控终端的设计

基于CAN总线的悬浮控制器监控终端的设计

作者:时间:2010-01-25来源:网络收藏
是德国Bosch公司为解决现代汽车中多传感器和之间的数据交换而开发的一种串行。由于它通信速率高、通信距离远、抗干扰能力强,因而适合高干扰环境。目前已广泛应用于背景干扰较强的控制系统之间的实时通信中。
  对于多点控制,的数目很可能不止一个,所处的电磁环境一般也比较恶劣。因此,控制器之间的通信方式和通信可靠性是一个必须考虑的问题。由总线组成的网络具有结构简单、可靠性高的特点,可以实现点对点、一点对多点及全局广播的特点,因此,对于控制来说,使用CAN网络作为通信网络是一个比较理想的选择。另一方面,处于复杂工作环境下的数字控制器很有可能在电磁干扰或电源波动的情况下进入“飞车”状态,从而使一点或多点失败。这就要求在CAN网络中一个上层的监督节点对这些网络中的节点进行有效的监督和实时调整。
  用计算机的并行接口配合专用的CAN驱动芯片的CAN网络监视器/调试器具有实现方便、界面友好的特点,但在实际的控制现场,这种计算机的系统具有携带不方便和造价高等问题。因此,一个便携式的CAN网络监督/调试器具有较大的实际意义。本文介绍一种TMS320LF2407A DSP的便携式CAN网络。它具有使用简单、界面友好、体积小的特点,适合于磁浮列车悬浮控制器的现场监督和调试。
1 系统简介
  对于多点悬浮控制来说,为了降低风险和提高控制灵活性,1个悬浮点一般由1个单独的控制器控制,各个悬浮点和节点的关系如图1所示。CAN监控也是CAN网络中的一个普通节点,通过双绞线连入整个网络。

本文引用地址:http://www.eepw.com.cn/article/163293.htm

  对于每个悬浮点,需要监控的参数一般包括电流、间隙、加速度以及其他一些中间参数等。根据不同的控制算法,监控的参数个数也不一样。监控节点的任务就是向其中的某个悬浮节点发出发送允许命令,该悬浮节点在接收到这个命令后,就定时地将传感器和控制器当前的参数打包发送到CAN总线上,然后再由监控节点监听这个节点发送的数据,并在显示屏上将接收到的参数显示出来。长时间接收还可以将某些参数,如电流和间隙,以曲线的形式描绘出来,用于对悬浮控制算法的评估。如果需要对当前被监控的控制器的某些参数进行修改,也可以通过CAN监控的人机接口向目标节点发送修改命令。
  在实现上,CAN监控终端的主控芯片选用TI公司的TMS320LF2407A型DSP。该DSP除了具备片内资源丰富、运算速度快、成本低、功耗小等特点外,还具备片上CAN模块,使用方便。数据输出用1块240×128的LCD液晶屏来实现,可以把各个参数变化的趋势用曲线描绘出来,灵活性好。用户输入采用行列扫描式键盘,使硬件实现和软件编程均比较方便。
2 硬件设计
  系统的硬件组成框图如图2所示。从图中可以看出,TMS320LF2407A DSP是整个电路的核心部件。它是面向实时控制的高性能16位定点DSP,具有32K字的片内Flash程序存储器和2.5K字的片内RAM,运算速度可以达到40MIPS,并带有片上串行通信接口和CAN通信接口等。这些特点为CAN监控终端的设计和实现带来了很大便利。在硬件实现上,考虑到系统对体积和功耗的要求,将所有的DSP程序和LCD的字库均通过JTAG口直接烧写在DSP的片内Flash中,通电后程序即可直接在片内Flash中运行。DSP的晶振频率选择6MHz,通过DSP片内的PLL锁相环4倍频后使DSP的工作主频达到24MHz。

  由于DSP片内备有CAN控制器模块,因此,监控终端的CAN模块设计很简单,只需在DSP的CANTX和CANRX引脚上接1个CAN驱动芯片即可。这里选用的CAN驱动芯片是PCA82C250。
  DSP的供电电压为3.3V,而外围芯片基本上都是5V,如果将它们直接相连必然会导致电平冲突。解决的办法是:在DSP的数据总线和外围接口总线之间用1片LVC4245作为双向缓冲器。在进行数据交换时,DSP的R/W信号控制着LVC4245的数据流向。
  LCD选用240×128点阵的SMG240128A单色液晶屏。它的显示有效面积比较大,适合于显示曲线等信息,底层驱动的编写也比较容易。LCD与DSP的接口采用模拟口线方式,即用2片74HC573分别锁存数据总线和控制总线的数据,模拟LCD的驱动时序。LCD的几个状态位直接由DSP的I/O引脚读入。
  键盘由0~9、A~F、以及SHIFT和ENTER共18个键组成,因此在硬件设计上采用5×4的行列扫描方式:即由74HC573提供5个输出行线,由74HC244提供4个列输入,由DSP提供行列扫描时序。考虑到电平匹配问题,74HC573和74HC244与DSP数据总线之间的连接也是通过LVC4245缓冲。
  LCD和键盘接口的74HC573以及74HC244芯片均由1片GAL通过对DSP的地址总线进行译码实现选通,其电路简单,灵活性好。
  出于便携式的要求,系统采用电池供电方式。这里采用5节可充电5号电池作为电源,正常供电电压为5~7V,正好符合电源芯片TPS7350的供电要求。由于系统内需要3.3V和5V二种供电电源,故这里选用1片低压差芯片TPS7350作为5V电源的供电芯片,用另一片低压差芯片TPS7333作为3.3V电源的供电芯片。为防止电池电量不足时导致意外停机事故,这里还采用1片LM311构建了一个电池电量报警电路,以便在电池电压低于安全电压时点亮LED报警提示。为了操作方便,所有的硬件电路以及电池等均安装在一个便携的塑料外壳中。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭