新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 教你如何选择合适的GDC

教你如何选择合适的GDC

作者:时间:2012-09-23来源:网络收藏

引言

本文引用地址:http://www.eepw.com.cn/article/148377.htm

  从3D着色到影像变形,现今绘图显示控制器()的功能,透过各式各样的应用呈现在使用者的眼前。众多高阶图像显示控制器的产品风格与价值,塑造出让消费者目眩神迷的影像,在频谱的另一端,各种等级的能明确而简单地显示资讯,让使用者一目了然看到自己想要的讯息。

  不论是简单的功能或炫丽的特色,能在绘图功能上细心投入的,最后必会在许多层面获得明显的成果。打造完美图像功能的第一步,是针对应用目标一款适合的,并以合理的价位获得所需功能。GDC可根据其性价比分成下列三类:

  基本 - QVGA萤幕,预先着色的图形,可包括影像输入功能

  中阶 - WVGA萤幕,以2D动态绘图为主,也可支援3D,有支援影像输入功能

  高阶 - SXGA或更高解析度的萤幕,动态3D绘图,多重影像输入

  本白皮书将为您阐述这三种GDC功能,以及它们达成各种应用之目标。文章最后将介绍富士通半导体阵容完备的GDC系列产品,还有该公司的360度环绕视讯影像技术。现今各种产品研发业者最重要的设计任务之一,就是充分发挥GDC各项功能优势,包括跑步机、电冰箱、智慧型手机和汽车等产品。

  1 决定嵌入式绘图架构的因素

  1.1 成本压力

  汽车产业是成本相对敏感应用领域的一个很好的例子,对于系统研发业者而言,最重要的工作就是降低零组件(BOM)成本。就基本到中阶的应用而言,研发业者可采用系统单芯片(SoC)绘图控制器来满足此方面需求,利用这种元件作为单芯片解决方案,这些GDC能透过CAN总线来和其他汽车系统进行通讯,并能切换到关机的电源模式来节省电池电力。由于内部VRAM记忆体的容量有限,加上各项系统瓶颈(像是总线速度)的限制,因此这些装置所支援的图像功能,弹性,像素填充率,以及萤幕尺寸都会受到局限。

  当成本因素的重要性不及效能时,这类应用可采用多重芯片架构的高阶芯片。这些GDC依赖外部车用微控制器来管理CAN传输作业,电源,以及像是步进马达控制器等周边元件。

  此外,由于这些GDC没有内建VRAM与程式快闪记忆体,因此会利用外部VRAM来支援高效能作业,在未来,运用内建式VRAM可进一步降低高阶车用GDC成本。

  相较于汽车产业,像是医疗和航空等领域的应用,面临的成本压力相对较低。系统研发业者可采用独立高阶GDC芯片,因为客户愿意多花一点钱来购买更高效能。若系统一开始设计时,需要重复使用软体,而是把一个独立GDC放到系统中就是个不错的作法。

  运用一颗时脉速度约1GHz的CPU,像是英特尔的Atom,制造商可在不同产品线上重复使用一部分的硬体与软体。有些产品可使用内建在CPU内的GDC。有些对价位较敏感的产品,但对效能的要求不是很高,则可采用SoC产品,其中效能强大的CPU整合了GDC处理核心。

  1.2 终端客户的期盼

  有些应用必须配合智慧型手机常见的高阶绘图能,此类应用之广包括汽车与各种家电产品。

  而在这些应用中,系统研发业者必须确保GDC能绘制出流畅清晰的影像,让系统能针对使用者的输入讯息做快速反应,因此,若要提供能满足最终使用者的经验,GDC就不能成为系统瓶颈,才不会产生延迟。

  基本型与中阶的应用也许使用真单芯片的系统芯片SoC即足够。但对于高阶应用而言,这类元件无法提供足够效能,因此需要用到含有外部VRAM与快闪记忆体的高阶(多芯片架构)芯片。

  若产品的萤幕支援24位RGB输入讯号,则24位RGB输出功能的GDC可协助避免频带效应 - 亦即相同颜色的阴影会出现急剧变化。运用24位色彩可确保图像影像外观流畅,否则,这样的应用就必须动用GDC内的抖色功能,来抵销频带效应。抖色可在画面缓冲区中套用随机的杂讯,以避免因有限的色彩深度导致的频带效应。

  尽管流畅鲜明的图像总是能吸引目光,但像是工业电子设备等应用,光靠较基本的图像功能,就能达到坚固易用的设计目标。在许多应用中,较低阶的GDC就能提供令人惊艳的效能,而且不会让零组件成本攀升。

  1.3 绘图内容的性质 - 静态或动态

  业者还必须根据图像内容的性质来挑选GDC。若内容属于静态,而且能预先判断,像是Spirite引擎这类低成本GDC就足堪重任。预先着色的位元图可储存在Sprint GDC的外部快闪记忆体。这类GDC非常适合用来处理不同色彩格式(包括使用色彩查找表或把实际像素值储存在画面缓冲区),而且还能处理透明与Alpha-blending的作业。运用资源耗用较少的压缩法,像是RLD(运行长度解码器),可大幅降低预先着色绘图的储存需求,进而降低成本。

  其他需要动态图像的应用,像是地图或随机动画等,其所需内容都是当场立即决定,这些应用需要一个具备全功能管线的GDC,可透过贴图(纹理贴图)2D或3D来着色模型。像是硬体光源与云雾等,也可发挥这类功能的效益。对于较复杂的作业而言,内含着色器的图像引擎可带来更高弹性。

  利用功能完备且具弹性的显示控制器,不仅能简化图像建置的工作,还能支援更好的图像功能,明确的说,图像开发远比控制器功能来得简单,像是弹性图层法以及支援多图层与Alpha-blending,还有各种色彩深度。

  1.4 2D或3D图像

  运用3D绘图对于GDC的效能与功能需求会有显着影响,例如,3D应用需要的顶点处理性能远高于2D应用,再加上像是贴图与Mipmap贴图等功能所需的视野校正,这些都是3D图像需要的功能(Mipmap是主要贴图的优化与调整尺寸版本,这种贴图和主要贴图储存在同一处)。它们让系统不必立即调整主要贴图的尺寸,对于效能提升有明显帮助。

  在3D图像中光是加入?轴座标,就会大幅增加处理需求。相较之下,2D绘图着色的过程则简单许多,若内容属于静态,还能预先着色,就如同本文先前所讨论,在2D或3D动态内容方面,需要用到一个全管线化的图像引擎。

  1.5 显示屏解析度

  因为尺寸较大,解析度较高的显示屏必须处理更多像素,因此采用较大显示屏的应用就需要更快,更强大的GDC。航空与医疗方面的应用,通常在其低阶机种需要640 × 480像素的显示屏,而在高阶机种中就需要1280 × 1024像素解析度的显示屏。在汽车市场,低阶仪表板与中控台的显示屏尺寸通常为480X272像素,中阶机种为800X480,而高阶机种则为1280x480或更高像素。

  1.6 显示屏数量

  不论是增加单一显示屏的解析度,或是增加显示屏数量,其所涉及到的像素数量都会以倍数增加,并需提高GDC的处理需求。虽然可以运用多个GDC来应付需求,但也有某些GDC内含的显示屏控制器能透过单一控制器来支援多个显示屏。这些GDC能多工处理视讯输出资讯,其运用两倍的显示屏或像素时脉频率的速率,就像是处理一个显示屏一样,不过这两个显示屏必须拥有相同的时序属性与显示屏解析度。这类GDC对于汽车仪表板相当实用,因为仪表板通常有两个相同解析度的显示屏。

  另一方面,有些GDC整合了超过一个显示屏控制器,能驱动多个不同时序与解析度的显示屏。这类控制器的成本会低于两个独立式GDC,设计工作也较简化。这其中一个典型例子,就是车用抬头显示器(HUD),HUD在仪表板上的显示屏解析度就低于主显示屏,而也有一种汽车应用是运用单一GDC来控制仪表板与中控台显示屏。

  1.7 视讯撷取的需求

  GDC针对不同的显示屏影像输入来源提供各种功能,包括摄像头或其他讯号来源。有些GDC整合了必要的模拟电路来支援模拟式NTSC(美规)/ PAL(欧规)的影像输入讯号,这些控制器对于基本视讯撷取应用而言相当实用。而其他GDC则支援数位YUV / RGB视讯格式,或需搭配AD转换器。

  对于需要撷取多重视讯的应用而言,可采用较高阶的GDC,这类元件整合多个视讯撷取单元,其显示屏控制器亦必须更强大,才能处理多重输入讯号,并把视讯串流重叠到影像上。

  汽车抬头显示器就是这种功能的另一项应用。由于影像投射在挡风玻璃上,为了配合挡风玻璃的曲度,其影像的调整处理过程便会类似鱼眼校正。

  影像的变形需要有内建3D功能的GDC来调整。若GDC能调整视讯影像的解析度高低,对系统会很有帮助。

  支援多重摄影处理的全景系统提升驾驶辅助系统之功能

  另一项特殊应用可能成为未来汽车的重要功能,就是利用装在车体四周的多部摄影机,将其输入影像结合成一张图像。这种应用中的系统必须要能处理高解析度视讯,再加上各种特殊影像处理功能,以接合成一张环绕全景的影像。

  理想的解决方案,是采用一个能够支援多重视讯输入格式,并具备高速影像处理功能的GDC,这种方案不需要外部FPGA就能建置这些功能,并达到必要效能,将3D着色功能纳入GDC内,系统便可将接合影像对应到碗状表面,以显示出逼真,无扭曲的360度车体四周环绕影像。


上一页 1 2 下一页

关键词: GDC 合适 选择 如何

评论


相关推荐

技术专区

关闭