cmos digital image sensor 文章
最新资讯
1. 内容简介 在2015年,苹果新一代的MacBook和Apple Watch皆搭载压力触控感应技术,它被Apple称为Force Touch,用户每次按下触控板之后除了可以在萤幕看见视觉回馈,它同时能够分辨出用户点按的力度强弱来做出一系列的相关操控与应用。而本文将介绍以HY16F184内建高精密Sigma-delta 24 Bit ADC搭配Uneo Force Sensor来实现一个类似Force Tou
关键字:
单片机 Force Sensor
本篇文章介绍了在逻辑IC中CMOS和TTL出现多余输入端的解决方法,并且对每种情况进行了较为详细的说明,希望大家能从本文得到有用的知识,解决输入端多余的问题。 CMOS门电路 CMOS门电路一般是由MOS管构成,由于MOS管的栅极和其它各极间有绝缘层相隔,在直流状态下,栅极无电流,所以静态时栅极不取电流,输入电平与外接电阻无关。由于MOS管在电路中是一压控元件,基于这一特点,输入端信号易受外界干扰,所以在使用CMOS门电路时输入端特别注意不能悬空。在使用时应采用以下方法: 与门和与非门电路 由
关键字:
CMOS TTL
D类放大器首次提出于1958年,近些年已逐渐流行起来。那么,什么是D类放大器?它们与其它类型的放大器相比如何? 为什么D类放大器对于音频应用很有意义?设计一个“优质”D类音频放大器需要考虑哪些因素? 本文中试图回答上述所有问题。 音频放大器背景 音频放大器的目的是以要求的音量和功率水平在发声输出元件上重新产生真实、高效和低失真的输入音频信号。音频频率范围约为20 Hz~20 kHz,因此放大器必须在此频率范围内具有良好的频率响应(当驱动频带有限的扬声器时频率
关键字:
D类放大器 CMOS
在工业应用的成像系统中,CCD是采用定制的半导体工艺生产,高度优化于成像应用,并需要外部电路将模拟输出电压转换为数字信号用于后续处理。具有高效的电子快门能力、宽动态范围和出色的图像均匀性。而CMOS图像传感器不像CCD将电荷传送到有限的输出端,而是放置晶体管在每一像素内,来进行电荷——电压转换。这令电压在整个器件中传输,使更快和更灵活的图像读取成为可能。
关键字:
成像系统 图像传感器 CCD CMOS 201604
TTL电平信号对于计算机处理器控制的设备内部的数据传输是很理想的。COMS集成电路的许多基本逻辑单元都是用增强型PMOS晶体管和增强型NMOS管按照互补对称形式连接的,下面来说一下两者的区别。 什么是TTL电平 TTL电平信号被利用的最多是因为通常数据表示采用二进制规定,+5V等价于逻辑"1",0V等价于逻辑"0",这被称做TTL(晶体管-晶体管逻辑电平)信号系统,这是计算机处理器控制的设备内部各部分之间通信的标准技术。 TTL电平信号对于计算机处理器控制
关键字:
TTL CMOS
整合光子与电子元件的半导体微芯片可加快资料传输速度、增进效能并减少功耗,但受到制程方面的限制,一直无法广泛应用。自然(Nature)杂志刊登一篇由美国加州大学柏克莱分校、科罗拉多大学和麻省理工学院研究人员发表的论文,表示已成功利用现有CMOS标准技术,制作出一颗整合光子与电子元件的单芯片。
据HPC Wire网站报导,这颗整合7,000万个电晶体和850个光子元件的芯片,采用商业化的45纳米SOI CMOS制程制作,与现有的设计和电子设计工具均相容,因此可以大量生产。芯片内建的光电发射器和接收器
关键字:
芯片 CMOS
集成电路按晶体管的性质分为TTL和CMOS两大类,TTL以速度见长,CMOS以功耗低而著称,其中CMOS电路以其优良的特性成为目前应用最广泛的集成电路。在电子制作中使用CMOS集成电路时,除了认真阅读产品说明或有关资料,了解其引脚分布及极限参数外,还应注意以下几个问题。 1、电源问题 (1)CMOS集成电路的工作电压一般在3-18V,但当应用电路中有门电路的模拟应用(如脉冲振荡、线性放大)时,最低电压则不应低于4.5V。由于CMOS集成电路工作电压宽,故使用不稳压的电源电路CMOS集成电路也可以正
关键字:
CMOS 集成电路
一.TTL TTL集成电路的主要型式为晶体管-晶体管逻辑门(transistor-transistor logic gate),TTL大部分都采用5V电源。 1.输出高电平Uoh和输出低电平Uol Uoh≥2.4V,Uol≤0.4V 2.输入高电平和输入低电平 Uih≥2.0V,Uil≤0.8V 二.CMOS CMOS电路是电压控制器件,输入电阻极大,对于干扰信号十分敏感,因此不用的输入端不应开路,接到地或者电源上。CMOS电路的优点是噪声容限较宽,静态功耗很小。
关键字:
TTL CMOS
欧盟(E.U.)最近启动一项为期三年的“为下一代高性能CMOS SoC技术整合III-V族奈米半导体”(INSIGHT)研发计划,这项研发经费高达470万美元的计划重点是在标准的互补金属氧化物半导体 (CMOS)上整合III-V族电晶体通道。其最终目的则在于符合未来的5G规格要求,以及瞄准频宽更广、影像解析度更高的雷达系统。
除了IBM (瑞士),该计划将由德国弗劳恩霍夫应用固态物理研究所Fraunhofer IAF、法国LETI、瑞典隆德大学(Lund Universi
关键字:
5G CMOS
1. 内容简介 在2015年,苹果新一代的MacBook和Apple Watch皆搭载压力触控感应技术,它被Apple称为Force Touch,用户每次按下触摸板之后除了可以在屏幕看见视觉回馈,它同时能够分辨出用户点按的力度强弱来做出一系列的相关操控与应用。而本文将介绍以HY16F184内建高精密Sigma-delta 24 Bit ADC搭配HDK Force Sensor来实现一个类似Force Touc
关键字:
混合信号 Force Sensor
推动高能效创新的安森美半导体(ON Semiconductor),进一步扩展成像方案产品阵容,推出最新的高性能CMOS数字图像传感器。AR1337是1/3.2英寸格式背照式器件,针对消费电子产品如智能手机和平板电脑。AR1337结合高性能的SuperPD™相位检测自动对焦(PDAF)像素技术,提供微光下300 ms或更少时间的对焦速度,即使微光低于25勒克斯(lux)。此外,AR1337通过采用其片上PDAF处理,大大简化集成到智能手机平台和提高相机模块集成商生产能力,较市场上其它
关键字:
安森美 CMOS
在正在举行的“ISSCC 2016”(2016年1月31日~2月4日,美国旧金山)上,与积层CMOS图像传感器的3D(三维)化相关的发表接连不断。在有9项演讲的“SESSION6 Image Sensors”论坛上,有3项演讲是与CMOS图像传感器的3D化有关的。以前业界就在做3D化尝试,而此次的3项技术除了比原来具有更强的低成本和低功耗意识之外,还在3D化中轻松实现了“模块化”。
通过模块化手段
关键字:
CMOS 传感器
在英特尔(Intel)负责晶圆厂业务的最高长官表示,摩尔定律(Moore’s Law)有很长的寿命,但如果采用纯粹的CMOS制程技术就可能不是如此。
“如 果我们能专注于降低每电晶体成本,摩尔定律的经济学是合理的;”英特尔技术与制造事业群(technology and manufacturing group)总经理William Holt,在近日于美国旧金山举行的年度固态电路会议(ISSCC)上对近3,000名与会者表示:“而超越CMOS,我们将看
关键字:
摩尔定律 CMOS
美国 CMOS 图像感测器大厂豪威(OmniVision)28 日宣布与中国清芯华创为首的投资基金完成收购,从清芯华创等提出收购邀约到完成并购历时长达两年,而在消息公布同时,豪威也于 28 日暂停在那斯达克证券市场的交易。
豪威 28 日宣布,与中国清芯华创、中信资本与其旗下的金石投资所组成的投资基金完成收购,豪威以每股 29.75 美元、总计 19 亿美元代价授予中国该基金,并于 28 日起于那斯达克证券市场暂停交易。据悉,早在 2014 年 8 月豪威即收到来自清
关键字:
OmniVision CMOS
随着数字电路向高集成度、高性能、高速度、低工作电压、低功耗等方向发展,数字电路中的△I噪声正逐步成为数字系统的主要噪声源之一,因此研究△I噪声的产生过程与基本特点,对认识△I噪声特性进而抑制△I噪声具有实际意义。 反相器是数字设计的核心。本文从反相器入手,分析了TTL和CMOS中△I噪声的产生过程与基本特点。 1 △I噪声的产生 1.1 TTL中△I噪声的产生 TTL反相器的基本电路如图1所示。在稳定状态下,输出Vo分别为高电平VOH和低电平VOL时,电源提供的电流IH和I
关键字:
TTL CMOS
cmos digital image sensor介绍
您好,目前还没有人创建词条cmos digital image sensor!
欢迎您创建该词条,阐述对cmos digital image sensor的理解,并与今后在此搜索cmos digital image sensor的朋友们分享。
创建词条
cmos digital image sensor电路
cmos digital image sensor相关帖子
cmos digital image sensor资料下载
cmos digital image sensor专栏文章
关于我们 -
广告服务 -
企业会员服务 -
网站地图 -
联系我们 -
征稿 -
友情链接 -
手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司
京ICP备12027778号-2 北京市公安局备案:1101082052 京公网安备11010802012473