- 我们探讨了用于线性化射频放大器的模拟预失真的基本概念,并回顾了一些常见的实现方式。现代通信系统使用具有时变包络和相位角的信号。为了处理这些信号,发射机需要线性功率放大器(PA)。然而,它们也需要高效率的功率放大器。正如我们所知,这样的放大器不可避免地是非线性的。幸运的是,有许多方法可以线性化功率放大器的响应。我们在上一篇文章中了解到的一种方法是找到失真并将其从功率放大器的输出信号中减去。这被称为前馈线性化。预失真是另一种常用的线性化技术。它不是在输出端校正信号,而是在功率放大器之前放置一个非线性电路,使组
- 关键字:
线性化射频放大器 RF
- 一、前言很多单片机都不具备DAC输出,但会有多路PWM输出,下面测试利用PCA芯片,GP8500,将PWM信号转换成模拟电压信号。测试一下这个方案,以备之后应用积累经验。二、电路设计设计基于STC32G单片机的测试电路。选择 PWMB中的第四个通道,也就是PWM8 的信号发送给 GP8500,由它将 PWM信号转换成模拟电压。铺设单面PCB,适合一分钟制板方法制作测试电路板。一分钟之后得到测试电路板,焊接清洗之后 进行测试。现在电路板工作电源为 5V。三、测试结果下载STC32G程序的时候, 选择内部时钟
- 关键字:
DAC PWM PCA 模拟信号
- 1. 什么是射频?射频简称RF,是高频交流变化电磁波的简称。电磁波其实就是比较熟悉的概念了,依据麦克斯韦的电磁场理论:振荡的电场产生振荡的磁场,振荡的磁场产生振荡的电场,电磁场在空间内不断向外传播,形成了电磁波。下图可以大致体现体现这个过程,E代表电场,B代表磁场。在轴上同一位置的电场、磁场的相位和幅度均会随着时间发生变化。通常情况下,射频(RF)是振荡频率在300KHz-300GHz之间的电磁波的统称,被广泛应用于雷达和无线通信。2. 射频基本特征为了描述给定射频信号,可以从频率、波长、幅度、相位四个角
- 关键字:
射频 RF
- 问: DAC电源相位噪声传播路径芯片上的所有电路都必须通过某种方式供电,这就给噪声传播到输出端提供了很多机会。不同电路电源噪声的传播路径也不一样,下面着重指出了 几种常见的 DAC 电源噪声传播路径。如下 图,DAC输出端通常由电流源和 MOS管组成,MOS管引导电流通过正引脚或负引脚供电。电流源从外部电源获得功率,任何噪声都会反映 为电流波动。图 1. DAC电源噪声来源1. MOS管电流源的 噪声可以经过MOS管到&nbs
- 关键字:
Digikey DAC 电源噪声
- 传统的射频 (RF) 发送信号链通常使用数模转换器 (DAC) 来生成基带信号。然后,使用射频混频器和本地振荡器将此信号上变频为所需的射频频率。射频 DAC 技术取得进步,现在允许直接以所需的射频频率生成信号,从而显著简化射频发送信号链的设计和复杂性。高频射频 DAC 具有平衡差分输出,而射频发送链和天线为单端。过去,射频工程师使用两种器件(即无源平衡-非平衡变压器和中间级射频增益块)来执行差分至单端 (D2S) 转换并提高射频信号的功率。但是,无源平衡-非平衡变压器具有多种局限性,包括印刷电路板 (PC
- 关键字:
发送信号链 差分转单端 射频放大器 DAC
- 关于射频模拟设计中的噪声分析,通过示例了解噪声系数度量,包括本规范的关键方面。除了一些特定的应用,例如,当需要抖动效果时,噪声通常是一种不想要的现象。科学家和工程师已经表征了不同电路元件产生的噪声,并开发了可用于分析电路噪声性能的方法。在模拟电路设计中,我们通常将噪声效应建模为输入参考噪声电压和电流源。然而,在射频(RF)设计中,噪声系数度量可以是表征电路噪声性能的更有用的方法。在本文中,我们将介绍噪声系数度量,强调该规范的一些微妙之处,最后看一个例子来澄清所讨论的概念。射频模拟设计中的噪声分析我们通常用
- 关键字:
噪声系数度量,射频电路,噪声,RF
- 本文要点:• 小信号 RF 放大器的用途。• 用于小信号 RF 放大器的分压器晶体管偏置电路。• 单级小信号 RF 放大器的设计步骤。几乎所有的电子电路都依赖于放大器,放大器电路会放大它们接收到的输入信号。基本的放大器电路由双极结型晶体管组成,晶体管偏置使器件在有源区运行。晶体管的有源区用于放大目的。当晶体管偏置为有源区时,施加在输入端子上的输入信号会使输出电流出现波动。波动的输出电流流过输出电阻,产生经过放大的输出电压。有些放大器能放大微弱 RF 输入信号且(与静态工作点相比)输出电流波动较小,它们称为
- 关键字:
RF 放大器
- 在采样速率和可用带宽方面,当今的射频模数转换器(RF ADC)已有长足的发展,其中还纳入了大量数字处理功能,电源方面的复杂性也有提高。那么,RF ADC为什么有如此多不同的电源轨和电源域?为了解电源域和电源的增长情况,我们需要追溯ADC的历史脉络。早期ADC采样速度很慢,大约在数十MHz内,而数字内容很少,几乎不存在。电路的数字部分主要涉及如何将数据传输到数字接收逻辑——专用集成电路 (ASIC) 或现场可编程门阵列 (FPGA)。用于制造这些电路的工艺节点几何尺寸较大,约在180 nm或更大。使用单电压
- 关键字:
ADI RF ADC
- 近期,Guerrilla RF宣布收购了Gallium Semiconductor的GaN功率放大器和前端模块产品组合。Guerrilla RF表示,通过此次收购,公司获得了Gallium Semiconductor 所有现有的元件、正在开发的新内核以及相关知识产权(IP)。公司将为无线基础设施、军事和卫星通信应用开发新的GaN器件产品线并实现商业化。Guerrilla RF官方经销商Telcom International的一位员工表示,公司计划向韩国市场供应Guerrilla RF的射频晶体管,并将其
- 关键字:
Guerrilla RF Gallium GaN
- 6月24日,在一年一度的全球电子设计自动化盛会DAC 2024 上,国内领先的系统级验证EDA解决方案提供商芯华章携手国内EDA龙头企业华大九天,共同展示了双方在数模混合仿真领域的最新联合解决方案。此外,芯华章隆重推出EDA全流程敏捷验证管理器昭睿FusionFlex,面向来自世界各地的顶级EDA公司和芯片、系统厂商,展示中国生态联合力量和创新活力。这一工具创新性针对芯片设计验证流程中的多工具、多资源、多需求挑战提出了专业化管理方案,为整合当前国产EDA分散的点工具,构建完整的全流程国产EDA生态提供了强
- 关键字:
芯华章 DAC 敏捷验证管理器 FusionFlex 华大九天 数模混合仿真
- 6月14日,纯化合物半导体代工厂稳懋半导体(WIN Semiconductors Corp)宣布,公司扩大了其RF
GaN技术组合,推出了基于碳化硅(SiC)的毫米波氮化镓(GaN)技术测试版NP12-0B平台。目前,NP12-0B鉴定测试已经完成,最终建模/PDK生成预计将于2024年8月完成,并计划于2024年第三季度末发布完整的生产版本。据稳懋半导体介绍,该平台的核心是0.12μm栅极RF GaN
HEMT技术,该技术结合了多项改进,以增强直流和射频的耐用性,并增加芯片级防潮性。NP12-0
- 关键字:
纯化合物 半导体 RF GaN
- 在低频下工作的普通电路与针对RF频率设计的电路之间的关键区别在于它们的电气尺寸。RF设计可采用多种波长的尺寸,导致电压和电流的大小和相位随元件的物理尺寸而变化。这为RF电路的设计和分析提供了一些基础的核心原理特性。基本概念和术语假设以任意负载端接传输线路(例如同轴电缆或微带线),并定义波量a和b,如图1所示。图1.以单端口负载端接匹配信号源的传输线路。这些波量是入射到该负载并从该负载反射的电压波的复振幅。我们现在可以使用这些量来定义电压反射系数Γ,它描述了反射波的复振幅与入射波复振幅的比值:反射系数也可以
- 关键字:
ADI RF 波反射
- 罗德与施瓦茨与索尼半导体以色列(Sony)合作,达成了3GPP Rel. 17 NTN NB-IoT RF性能验证的行业首次里程碑。他们还成功验证了基于PCT的测试用例。两项工作都有助于NTN NB-IoT技术的市场就绪。在2024年巴塞罗那世界移动通信大会上,罗德与施瓦茨将在其展台上展示与Sony的Altair NTN Release 17 IoT设备一起进行NTN NB-IoT测试的实时演示。与Sony的合作中,罗德与施瓦茨成功验证了Sony的Altair设备的NTN NB-IoT功能。使用罗德与施瓦
- 关键字:
罗德与施瓦茨 索尼 3GPP Rel. 17 NB-IoT RF
- 在所有器件特性中,噪声可能是一个特别具有挑战性、难以掌握的设计课题。这些挑战常常导致一些道听途说的设计规则,并且开发中要反复试错。本文将解决相位噪声问题,目标是通过量化分析来阐明如何围绕高速数模转换器中的相位噪声贡献进行设计。本文旨在获得一种"一次成功"的设计方法,即设计不多不少,刚好满足相位噪声要求。从一块白板开始,首先将DAC视作一个模块。噪声可能来自内部,因为任何实际元器件都会产生某种噪声;也可能来自外部噪声源。外部噪声源可通过DAC的任何外部的任何外部任意连接,包括电源、时钟和
- 关键字:
相位噪声 DAC 数模转换
- 就在几个月之前,一则消息被各大媒体平台报道:2023年7月3日,为维护国家安全和利益,中国相关部门发布公告,决定自8月1日起,对镓和锗两种关键金属实行出口管制。至此有不少不关注该领域的读者突然意识到,不知道从什么时候开始,我国的镓和锗已经悄悄成为了世界最大的出口国。根据一份中国地质科学院矿产资源研究所2020年的一份报告显示,目前镓的世界总储量约 23 万吨,中国的镓金属储量居世界第一,约占世界总储量的 80%-85%,而我国的镓产量则是压倒性的占到了全球产量的90%到95%。而作为镓的化合物,砷化镓、氮
- 关键字:
雷达 RF 氮化镓 相控阵
rf-dac介绍
您好,目前还没有人创建词条rf-dac!
欢迎您创建该词条,阐述对rf-dac的理解,并与今后在此搜索rf-dac的朋友们分享。
创建词条
关于我们 -
广告服务 -
企业会员服务 -
网站地图 -
联系我们 -
征稿 -
友情链接 -
手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司

京ICP备12027778号-2 北京市公安局备案:1101082052 京公网安备11010802012473